【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 ARIMA、AutoARIMA、LSTM、Prophet、多元Prophet 实现

简介: 详细介绍了在第十届“泰迪杯”数据挖掘挑战赛B题中对电力系统负荷进行预测分析的方法,包括数据预处理、特征工程、平稳性检验、数据转换以及使用ARIMA、AutoARIMA、LSTM、Prophet和多元Prophet模型进行建模和预测,并提供了完整代码的下载链接。

更新时间:2022年4月21日

相关链接

(1)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一Baseline方案

(2)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题一ARIMA、AutoARIMA、LSTM、Prophet 多方案实现

(3)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 问题二 时间突变分析 Python实现

(4)【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 31页省一等奖论文及代码

完整代码下载链接

https://www.betterbench.top/#/35/detail

1 读取数据预处理的文件

import numpy as np
import pandas as pd

import seaborn as sns 
import matplotlib.pyplot as plt 
from colorama import Fore

from sklearn.metrics import mean_absolute_error, mean_squared_error
import math

import warnings # Supress warnings 
warnings.filterwarnings('ignore')
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
np.random.seed(7)

df = pd.read_csv(r"./data/泰迪杯数据2.csv")
df.head()

1.png

df  = df.rename(columns={'日期1':'date'})
df

2.png

2 查看时序

from datetime import datetime, date 

df['date'] = pd.to_datetime(df['date'])
df.head().style.set_properties(subset=['date'], **{'background-color': 'dodgerblue'})

3.png

# To compelte the data, as naive method, we will use ffill
f, ax = plt.subplots(nrows=7, ncols=1, figsize=(15, 25))

for i, column in enumerate(df.drop('date', axis=1).columns):
  。。。略

4.png

5.png

df = df.sort_values(by='date')

# Check time intervals
df['delta'] = df['date'] - df['date'].shift(1)

df[['date', 'delta']].head()

6.png

df['delta'].sum(), df['delta'].count()

(Timedelta(‘13 days 23:45:00’), 1439)

df = df.drop('delta', axis=1)
df.isna().sum()

date 0
总有功功率(kw) 51
最高温度 6
最低温度 0
白天风力风向 0
夜晚风力风向 0
天气1 0
天气2 0
dtype: int64

3 异常值缺失值

f, ax = plt.subplots(nrows=2, ncols=1, figsize=(15, 15))

。。。略


ax[1].set_xlim([date(2018, 1, 1), date(2018, 1, 15)])

7.png

3.1 HeatMap颜色

Accent, Accent_r, Blues, Blues_r, BrBG, BrBG_r, BuGn, BuGn_r,

BuPu, BuPu_r, CMRmap, CMRmap_r, Dark2, Dark2_r, GnBu, GnBu_r,

Greens, Greens_r, Greys, Greys_r, OrRd, OrRd_r,

Oranges, Oranges_r, PRGn, PRGn_r, Paired, Paired_r, Pastel1, Pastel1_r, Pastel2, Pastel2_r,

PiYG, PiYG_r, PuBu, PuBuGn, PuBuGn_r, PuBu_r, PuOr, PuOr_r, PuRd, PuRd_r, Purples, Purples_r,

RdBu, RdBu_r, RdGy, RdGy_r, RdPu, RdPu_r, RdYlBu, RdYlBu_r, RdYlGn, RdYlGn_r, Reds, Reds_r,

Set1, Set1_r, Set2, Set2_r, Set3, Set3_r, Spectral, Spectral_r, Wistia, Wistia_r, YlGn, YlGnBu,

YlGnBu_r, YlGn_r, YlOrBr, YlOrBr_r, YlOrRd, YlOrRd_r, afmhot, afmhot_r, autumn, autumn_r, binary,

binary_r, bone, bone_r, brg, brg_r, bwr, bwr_r, cividis, cividis_r, cool, cool_r, coolwarm,

coolwarm_r, copper, copper_r, cubehelix, cubehelix_r, flag, flag_r, gist_earth, gist_earth_r,

gist_gray, gist_gray_r, gist_heat, gist_heat_r, gist_ncar, gist_ncar_r, gist_rainbow,

gist_rainbow_r, gist_stern, gist_stern_r, gist_yarg, gist_yarg_r, gnuplot, gnuplot2,

gnuplot2_r, gnuplot_r, gray, gray_r, hot, hot_r, hsv, hsv_r, icefire, icefire_r, inferno,

inferno_r, jet, jet_r, magma, magma_r, mako, mako_r, nipy_spectral, nipy_spectral_r,

ocean, ocean_r, pink, pink_r, plasma, plasma_r, prism, prism_r, rainbow, rainbow_r,

rocket, rocket_r, seismic, seismic_r, spring, spring_r, summer, summer_r, tab10, tab10_r,

tab20, tab20_r, tab20b, tab20b_r, tab20c, tab20c_r, terrain, terrain_r, twilight, twilight_r,

twilight_shifted, twilight_shifted_r, viridis, viridis_r, vlag, vlag_r, winter, winter_r

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(16,5))

sns.heatmap(df.T.isna(), cmap='Reds_r')
ax.set_title('Missing Values', fontsize=16)

for tick in ax.yaxis.get_major_ticks():
    tick.label.set_fontsize(14)
plt.show()

8.png

3.2 缺失值处理(多种填充方式)

f, ax = plt.subplots(nrows=4, ncols=1, figsize=(15, 12))

sns.lineplot(x=df['date'], y=df['总有功功率(kw)'].fillna(0), ax=ax[0], color='darkorange', label = 'modified')
sns.lineplot(x=df['date'], y=df['总有功功率(kw)'].fillna(np.inf), ax=ax[0], color='dodgerblue', label = 'original')
ax[0].set_title('Fill NaN with 0', fontsize=14)
ax[0].set_ylabel(ylabel='Volume', fontsize=14)

。。。略

for i in range(4):
    ax[i].set_xlim([date(2018, 1, 1), date(2018, 1, 15)])

plt.tight_layout()
plt.show()

9.png

df['总有功功率(kw)'] = df['总有功功率(kw)'].interpolate()

4 数据平滑与采样

重采样可以提供数据的附加信息。有两种类型的重采样:

上采样是指增加采样频率(例如从几天到几小时)

下采样是指降低采样频率(例如,从几天到几周)

在这个例子中,我们将使用。resample()函数

fig, ax = plt.subplots(ncols=1, nrows=3, sharex=True, figsize=(16,12))

sns.lineplot(df['date'], df['总有功功率(kw)'], color='dodgerblue', ax=ax[0])
ax[0].set_title('总有功功率(kw) Volume', fontsize=14)

。。。略
for i in range(3):
    ax[i].set_xlim([date(2018, 1, 1), date(2018, 1, 14)])

10.png

# As we can see, downsample to weekly could smooth the data and hgelp with analysis
downsample = df[['date',
                 '总有功功率(kw)', 
                ]].resample('7D', on='date').mean().reset_index(drop=False)

# df = downsample.copy()
downsample

11.png

5 平稳性检验

目测:绘制时间序列并检查趋势或季节性

基本统计:分割时间序列并比较每个分区的平均值和方差

统计检验:增强的迪基富勒检验

# A year has 52 weeks (52 weeks * 7 days per week) aporx.
rolling_window = 52
f, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 6))

。。。略
plt.show()

12.png

现在,我们将检查每个变量: p值小于0.05 检查ADF统计值与critical_values的比较范围

from statsmodels.tsa.stattools import adfuller

result = adfuller(df['总有功功率(kw)'].values)
result

(-5.279986646245767, 6.0232754503160645e-06, 24, 1415,

{‘1%’: -3.434979825137732, ‘5%’: -2.8635847436211317, ‘10%’: -2.5678586114197954}, 29608.16365155926)

# Thanks to https://www.kaggle.com/iamleonie for this function!
f, ax = plt.subplots(nrows=1, ncols=1, figsize=(12, 6))

def visualize_adfuller_results(series, title, ax):
   。。。略

visualize_adfuller_results(df['总有功功率(kw)'].values, '总有功功率(kw)',ax=ax)
# visualize_adfuller_results(df['temperature'].values, 'Temperature', ax[1, 0])
# visualize_adfuller_results(df['river_hydrometry'].values, 'River_Hydrometry', ax[0, 1])
# visualize_adfuller_results(df['drainage_volume'].values, 'Drainage_Volume', ax[1, 1])
# visualize_adfuller_results(df['depth_to_groundwater'].values, 'Depth_to_Groundwater', ax[2, 0])

# f.delaxes(ax[2, 1])
plt.tight_layout()
plt.show()

13.png

如果数据不是静态的,但我们想使用一个模型,如ARIMA(需要这个特征),数据必须转换。

将序列转换为平稳序列的两种最常见的方法是:

​ 变换:例如对数或平方根,以稳定非恒定方差

​ 差分:从以前的值中减去当前值

6 数据转换

(1)对数

df['总有功功率(kw)_log'] = np.log(abs(df['总有功功率(kw)']))

。。。略
sns.distplot(df['总有功功率(kw)_log'], ax=ax[1])

14.png

(2)一阶差分

# First Order Differencing
ts_diff = np.diff(df['总有功功率(kw)'])
df['总有功功率(kw)_diff_1'] = np.append([0], ts_diff)

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 6))
visualize_adfuller_results(df['总有功功率(kw)_diff_1'], 'Differenced (1. Order) \n Depth to Groundwater', ax)

15.png

7 特征工程

7.1 时序提取

df['year'] = pd.DatetimeIndex(df['date']).year
df['month'] = pd.DatetimeIndex(df['date']).month
df['day'] = pd.DatetimeIndex(df['date']).day
。。。略

df[['date', 'year', 'month', 'day', 'day_of_year', 'week_of_year', 'quarter', 'season']].head()

16.png

7.2 编码循环特征

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 3))

sns.lineplot(x=df['date'], y=df['month'], color='dodgerblue')
ax.set_xlim([date(2018, 1, 1), date(2018, 1, 14)])
plt.show()

17.png

month_in_year = 12
df['month_sin'] = np.sin(2*np.pi*df['month']/month_in_year)
df['month_cos'] = np.cos(2*np.pi*df['month']/month_in_year)

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(6, 6))

sns.scatterplot(x=df.month_sin, y=df.month_cos, color='dodgerblue')
plt.show()

18.png

7.3 时间序列分解

from statsmodels.tsa.seasonal import seasonal_decompose

core_columns =  [
    '总有功功率(kw)']
。。。略
fig, ax = plt.subplots(ncols=2, nrows=4, sharex=True, figsize=(16,8))

for i, column in enumerate(['总有功功率(kw)', '最低温度']):

    res = seasonal_decompose(df[column], freq=52, model='additive', extrapolate_trend='freq')

    ax[0,i].set_title('Decomposition of {}'.format(column), fontsize=16)
    res.observed.plot(ax=ax[0,i], legend=False, color='dodgerblue')
    ax[0,i].set_ylabel('Observed', fontsize=14)
。。。略

plt.show()

19.png

7.4 滞后特征

weeks_in_month = 4

for column in core_columns:
    df[f'{column}_seasonal_shift_b_2m'] = df[f'{column}_seasonal'].shift(-2 * weeks_in_month)
    df[f'{column}_seasonal_shift_b_1m'] = df[f'{column}_seasonal'].shift(-1 * weeks_in_month)
    df[f'{column}_seasonal_shift_1m'] = df[f'{column}_seasonal'].shift(1 * weeks_in_month)
    df[f'{column}_seasonal_shift_2m'] = df[f'{column}_seasonal'].shift(2 * weeks_in_month)
    df[f'{column}_seasonal_shift_3m'] = df[f'{column}_seasonal'].shift(3 * weeks_in_month)

7.6 探索性数据分析

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 6))
f.suptitle('Seasonal Components of Features', fontsize=16)

for i, column in enumerate(core_columns):
    。。。略

plt.tight_layout()
plt.show()

20.png

7.7 相关性分析

f, ax = plt.subplots(nrows=1, ncols=1, figsize=(8, 8))

。。。略

plt.tight_layout()
plt.show()

21.png

7.8 自相关分析

from pandas.plotting import autocorrelation_plot

autocorrelation_plot(df['总有功功率(kw)_diff_1'])
plt.show()

22.png

from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf

f, ax = plt.subplots(nrows=2, ncols=1, figsize=(16, 8))
。。。略

plt.show()

23.png

8 建模

8.1 时序中交叉验证

from sklearn.model_selection import TimeSeriesSplit

N_SPLITS = 3

X = df['date']
y = df['总有功功率(kw)']

folds = TimeSeriesSplit(n_splits=N_SPLITS)
f, ax = plt.subplots(nrows=N_SPLITS, ncols=2, figsize=(16, 9))

for i, (train_index, valid_index) in enumerate(folds.split(X)):
    。。。略
for i in range(N_SPLITS):
    ax[i, 0].set_xlim([date(2018, 1, 1), date(2018, 1, 14)])
    ax[i, 1].set_xlim([date(2018, 1, 1), date(2018, 6, 30)])

plt.tight_layout()
plt.show()

24.png

8.2 单变量时间序列模型

train_size = int(0.85 * len(df))
test_size = len(df) - train_size
df = df.fillna(0)
univariate_df = df[['date', '总有功功率(kw)']].copy()
univariate_df.columns = ['ds', 'y']

train = univariate_df.iloc[:train_size, :]

x_train, y_train = pd.DataFrame(univariate_df.iloc[:train_size, 0]), pd.DataFrame(univariate_df.iloc[:train_size, 1])
x_valid, y_valid = pd.DataFrame(univariate_df.iloc[train_size:, 0]), pd.DataFrame(univariate_df.iloc[train_size:, 1])

print(len(train), len(x_valid))

8.2.1 ARIMA

from statsmodels.tsa.arima_model import ARIMA
import warnings
warnings.ignore=True

。。。略

# Prediction with ARIMA
# y_pred, se, conf = model_fit.forecast(202)
y_pred, se, conf = model_fit.forecast(216)

# Calcuate metrics
score_mae = mean_absolute_error(y_valid, y_pred)
score_rmse = math.sqrt(mean_squared_error(y_valid, y_pred))

print(Fore.GREEN + 'RMSE: {}'.format(score_rmse))

RMSE: 30973.353510293528

f, ax = plt.subplots(1)
f.set_figheight(6)
f.set_figwidth(15)

model_fit.plot_predict(1, 1300, ax=ax)
sns.lineplot(x=x_valid.index, y=y_valid['y'], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_title(f'Prediction \n MAE: {score_mae:.2f}, RMSE: {score_rmse:.2f}', fontsize=14)
ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

ax.set_ylim(100000, 350392)
plt.show()

25.png

f, ax = plt.subplots(1)
f.set_figheight(4)
f.set_figwidth(15)

sns.lineplot(x=x_valid.index, y=y_pred, ax=ax, color='blue', label='predicted') #navajowhite
sns.lineplot(x=x_valid.index, y=y_valid['y'], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

plt.show()

26.png

8.2.2 LSTM

from sklearn.preprocessing import MinMaxScaler

data = univariate_df.filter(['y'])
#Convert the dataframe to a numpy array
dataset = data.values

scaler = MinMaxScaler(feature_range=(-1, 0))
scaled_data = scaler.fit_transform(dataset)

scaled_data[:10]

array([[-0.50891613], [-0.50891613], [-0.59567808], [-0.59567808], [-0.60361527], [-1. ], [-0.63509216], [-0.63509216], [-0.58983584], [-0.58983584]])

# Defines the rolling window
look_back = 52
# Split into train and test sets
train, test = scaled_data[:train_size-look_back,:], scaled_data[train_size-look_back:,:]

d。。。略
x_train, y_train = create_dataset(train, look_back)
x_test, y_test = create_dataset(test, look_back)

# reshape input to be [samples, time steps, features]
x_train = np.reshape(x_train, (x_train.shape[0], 1, x_train.shape[1]))
x_test = np.reshape(x_test, (x_test.shape[0], 1, x_test.shape[1]))

print(len(x_train), len(x_test))
from keras.models import Sequential
from keras.layers import Dense, LSTM

#Build the LSTM model
model = Sequential()
model.add(LSTM(128, return_sequences=True, input_shape=(x_train.shape[1], x_train.shape[2])))
model.add(LSTM(64, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))

# Compile the model
model.compile(optimizer='adam', loss='mean_squared_error')

#Train the model
model.fit(x_train, y_train, batch_size=16, epochs=10, validation_data=(x_test, y_test))

model.summary()

Epoch 1/10 70/70 [] - 15s 10ms/step - loss: 0.0417 - val_loss: 0.0071 Epoch 2/10 70/70 [] - 0s 3ms/step - loss: 0.0104 - val_loss: 0.0036 Epoch 3/10 70/70 [] - 0s 6ms/step - loss: 0.0081 - val_loss: 0.0023 Epoch 4/10 70/70 [] - 0s 4ms/step - loss: 0.0064 - val_loss: 0.0017 Epoch 5/10 70/70 [] - 0s 4ms/step - loss: 0.0059 - val_loss: 0.0017 Epoch 6/10 70/70 [] - 0s 3ms/step - loss: 0.0053 - val_loss: 0.0019 Epoch 7/10 70/70 [] - 0s 3ms/step - loss: 0.0065 - val_loss: 0.0019 Epoch 8/10 70/70 [] - 0s 3ms/step - loss: 0.0051 - val_loss: 0.0013 Epoch 9/10 70/70 [] - 0s 3ms/step - loss: 0.0048 - val_loss: 0.0023 Epoch 10/10 70/70 [] - 0s 4ms/step - loss: 0.0052 - val_loss: 0.0012 Model: “sequential” _________________________________________________________________

Layer (type) Output Shape Param # =================================================================

lstm (LSTM) (None, 1, 128) 92672

stm_1 (LSTM) (None, 64) 49408

dense (Dense) (None, 25) 1625

dense_1 (Dense) (None, 1) 26 =================================================================

Total params: 143,731 Trainable params: 143,731 Non-trainable params: 0

# Lets predict with the model
train_predict = model.predict(x_train)
test_predict = model.predict(x_test)

# invert predictions
train_predict = scaler.inverse_transform(train_predict)
y_train = scaler.inverse_transform([y_train])

test_predict = scaler.inverse_transform(test_predict)
y_test = scaler.inverse_transform([y_test])

# Get the root mean squared error (RMSE) and MAE
score_rmse = np.sqrt(mean_squared_error(y_test[0], test_predict[:,0]))
score_mae = mean_absolute_error(y_test[0], test_predict[:,0])
print(Fore.GREEN + 'RMSE: {}'.format(score_rmse))
from sklearn.metrics import r2_score
print('R2-score:',r2_score(y_test[0], test_predict[:,0]))

RMSE: 4502.091881948914

R2-score: 0.9519027039841994

x_train_ticks = univariate_df.head(train_size)['ds']
y_train = univariate_df.head(train_size)['y']
x_test_ticks = univariate_df.tail(test_size)['ds']

# Plot the forecast
f, ax = plt.subplots(1)
f.set_figheight(6)
f.set_figwidth(15)

sns.lineplot(x=x_train_ticks, y=y_train, ax=ax, label='Train Set') #navajowhite
sns.lineplot(x=x_test_ticks, y=test_predict[:,0], ax=ax, color='green', label='Prediction') #navajowhite
sns.lineplot(x=x_test_ticks, y=y_test[0], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_title(f'Prediction \n MAE: {score_mae:.2f}, RMSE: {score_rmse:.2f}', fontsize=14)
ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

plt.show()

27.png

8.2.3 AutoARIMA

from statsmodels.tsa.arima_model import ARIMA
import pmdarima as pm
。。。略
print(model.summary())

28.png

y_pred = model.predict(216)
from sklearn.metrics import r2_score
print('R2-score:',r2_score(y_valid, y_pred))

R2-score: -0.08425358340633804

model.plot_diagnostics(figsize=(16,8))
plt.show()

29.png

8.3 多元时序预测

df.columns

Index([‘date’, ‘总有功功率(kw)’, ‘最高温度’, ‘最低温度’, ‘白天风力风向’, ‘夜晚风力风向’, ‘天气1’, ‘天气2’], dtype=‘object’)

feature_columns = [
     '最高温度', '最低温度', '白天风力风向', '夜晚风力风向', '天气1', '天气2'
]
target_column = ['总有功功率(kw)']

train_size = int(0.85 * len(df))

multivariate_df = df[['date'] + target_column + feature_columns].copy()
multivariate_df.columns = ['ds', 'y'] + feature_columns

train = multivariate_df.iloc[:train_size, :]
x_train, y_train = pd.DataFrame(multivariate_df.iloc[:train_size, [0,2,3,4,5,6,7]]), pd.DataFrame(multivariate_df.iloc[:train_size, 1])
x_valid, y_valid = pd.DataFrame(multivariate_df.iloc[train_size:, [0,2,3,4,5,6,7]]), pd.DataFrame(multivariate_df.iloc[train_size:, 1])

train.head()

30.png

train  =multivariate_df.iloc[:train_size, :]
train

31.png

8.3.1 多元Propher

from fbprophet import Prophet

# Train the model
model = Prophet()
# model.add_regressor('最高温度')
# model.add_regressor('最低温度')
# model.add_regressor('白天风力风向')
# model.add_regressor('夜晚风力风向')
# model.add_regressor('天气1')
# model.add_regressor('天气2')
# Fit the model with train set
model.fit(train)

# Predict on valid set
y_pred = model.predict(x_valid)

# Calcuate metrics
score_mae = mean_absolute_error(y_valid, y_pred['yhat'])
score_rmse = math.sqrt(mean_squared_error(y_valid, y_pred['yhat']))

print(Fore.GREEN + 'RMSE: {}'.format(score_rmse))
from sklearn.metrics import r2_score
print('R2-score:',r2_score(y_valid, y_pred['yhat']))
# Plot the forecast
f, ax = plt.subplots(1)
f.set_figheight(6)
f.set_figwidth(15)

model.plot(y_pred, ax=ax)
sns.lineplot(x=x_valid['ds'], y=y_valid['y'], ax=ax, color='orange', label='Ground truth') #navajowhite

ax.set_title(f'Prediction \n MAE: {score_mae:.2f}, RMSE: {score_rmse:.2f}', fontsize=14)
ax.set_xlabel(xlabel='Date', fontsize=14)
ax.set_ylabel(ylabel='总有功功率(kw)', fontsize=14)

plt.show()

32.png

目录
相关文章
|
3月前
|
自然语言处理 算法 数据挖掘
【数据挖掘】十大算法之PageRank连接分析算法
文章介绍了PageRank算法的基本概念和数学模型,包括如何通过一阶马尔科夫链定义随机游走模型以及如何计算网页的重要性评分,并提供了PageRank迭代算法的具体步骤。
71 0
|
3月前
|
数据采集 自然语言处理 数据可视化
基于Python的社交媒体评论数据挖掘,使用LDA主题分析、文本聚类算法、情感分析实现
本文介绍了基于Python的社交媒体评论数据挖掘方法,使用LDA主题分析、文本聚类算法和情感分析技术,对数据进行深入分析和可视化,以揭示文本数据中的潜在主题、模式和情感倾向。
157 0
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
本文总结了2023年第十一届泰迪杯数据挖掘挑战赛A题的新冠疫情防控数据分析,提供了32页和40页的论文以及实现代码,涉及密接者追踪、疫苗接种影响分析、重点场所管控以及疫情趋势研判等多个方面,运用了机器学习算法和SEIR传染病模型等方法。
59 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 32页和40页论文及实现代码
|
3月前
|
机器学习/深度学习 安全 算法
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛A题的解题思路和Python代码实现,涵盖了新冠疫情防控数据的分析、建模方案以及数据治理的具体工作。
74 0
【2023年第十一届泰迪杯数据挖掘挑战赛】A题:新冠疫情防控数据的分析 建模方案及python代码详解
|
3月前
|
机器学习/深度学习 数据采集 存储
基于Python+flask+echarts的气象数据采集与分析系统,可实现lstm算法进行预测
本文介绍了一个基于Python、Flask和Echarts的气象数据采集与分析系统,该系统集成了LSTM算法进行数据预测,并提供了实时数据监测、历史数据查询、数据可视化以及用户权限管理等功能。
|
3月前
|
数据采集 自然语言处理 数据可视化
基于python数据挖掘在淘宝评价方面的应用与分析,技术包括kmeans聚类及情感分析、LDA主题分析
本文探讨了基于Python数据挖掘技术在淘宝评价分析中的应用,涵盖了数据采集、清洗、预处理、评论词频分析、情感分析、聚类分析以及LDA主题建模和可视化,旨在揭示淘宝客户评价中的潜在模式和情感倾向,为商家和消费者提供决策支持。
|
3月前
|
SQL 开发框架 大数据
【数据挖掘】顺丰科技2022年秋招大数据挖掘与分析工程师笔试题
顺丰科技2022年秋招大数据挖掘与分析工程师笔试题解析,涵盖了多领域选择题和编程题,包括动态规划、数据库封锁协议、概率论、SQL、排序算法等知识点。
87 0
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】PCA 主成分分析算法过程及原理讲解
主成分分析(PCA)的原理和算法过程。
74 0

热门文章

最新文章