基于小波哈尔法(WHM)的一维非线性IVP测试问题的求解(Matlab代码实现)

简介: 基于小波哈尔法(WHM)的一维非线性IVP测试问题的求解(Matlab代码实现)

💥1 概述

小波哈尔法(WHM)是一种求解一维非线性初值问题(IVP)的数值方法。它基于小波分析的思想,通过将原始问题转化为小波空间中的线性问题,然后进行求解。以下是一维非线性IVP测试问题的求解步骤:


1. 确定目标问题:首先,确定你要解决的一维非线性IVP测试问题。这可能涉及到一个非线性的微分方程和一些边界条件。


2. 小波基函数选择:选择适当的小波基函数来表示问题中的解。小波基函数应该具有良好的局部特性和适应性,以便更好地表示原始问题。常见的小波基函数包括Haar小波、Daubechies小波和Symlet小波等。


3. 建立小波变换:通过将问题转化为小波空间中的线性问题来建立小波变换。这可以通过将解函数和微分方程表示为小波基函数的线性组合来实现。


4. 线性方程求解:将小波变换应用于原始问题后,将其转化为一组线性方程。通过求解这组线性方程来获得小波系数,从而得到原始问题的近似解。


5. 逆小波变换:将得到的小波系数和小波基函数的逆变换应用于小波空间,将解转换回原始空间。这将给出原始问题的近似解。


6. 结果评估:评估求解结果的准确性和收敛性。可以比较近似解与真实解之间的差异,并检查所采用的小波基函数的适用性。


需要注意的是,小波哈尔法(WHM)是一个高级的数值方法,需要掌握小波分析和线性代数的基础知识。在实施过程中,还需进行适当的数值技巧,如数值积分和线性方程求解等。


📚2 运行结果

部分代码:

% step 1
% collocation points
J = 3;                              % level of decomposition
N = 2^(J + 1); % N = 2M             % number of basis functions
j = 1:N;                            % index of grid points
x = (j - 0.5) ./ N;                 % grid points
% step 2
% initial values
alpha1 = 0;                         % initial value of a function
beta1  = - 1;                       % initial value of the first derivative
a1     = beta1 - alpha1;
% step 3
% Newton solver
W = zeros(N,N);
f = zeros([N 1]);
a = zeros([N 1]);
epsilon = 1e-4;
r = ones([N 1]);
iter_ind = 0;
tic
while max(r) > epsilon   
    for j = 1:N
        % f(x) computation 
        % H, P1, P2 computation
        H = 0;               
        P1 = 0;
        P2 = 0;
        for i = 1:N
            H  = H  + a(i) * haar(x(j), i, J);
            P1 = P1 + a(i) * p1(x(j), i, J);
            P2 = P2 + a(i) * p2(x(j), i, J);            
        end;
        f(j) = 2 * (alpha1 + beta1 * x(j) + P2) * ...
            (beta1 + P1) + H;  
        % W(x) matrix computation        
        for k = 1:N
            W(j,k) = 2 * p2(x(j),k,J) * (beta1 + P1) + ...
                2 * (alpha1 + beta1 * x(j) + P2) * p1(x(j),k,J) + haar(x(j),k,J);            
        end; % for k
    end; % for j
    a_new = W \ (W*a - f);      % linear system solution
    r = abs(a_new - a);         % residual 
    disp(['iteration: ' num2str(iter_ind) ' error Newton: ' num2str(max(r))])   
    % Update variables
    a = a_new;
    iter_ind = iter_ind + 1;
end; % while
toc
% Reconstruct approximate solution
y = zeros(N,1);
for j = 1:N    
    S = 0;
    for i = 1:N
        S = S + a(i) * p2(x(j),i,J);
    end
    y(j) = alpha1 + x(j) * beta1 + S;
end; % for
%% Exact solution
yexact = - tan(x);
% critical point pi/2 ~= 1.5708
x_zero1 = 0.5 * pi; 
%% Runge - Kutta method
[x, y1] = ode113('model0', x, [alpha1 beta1]);
%% Plot graphics
set(0,'defaulttextinterpreter','latex')
set(0,'defaultaxesfontname','times')
set(0,'defaultaxesfontsize',12)
oft = 0.01;
% fig:01
figure('color','w')
plot(x,yexact,'g',x,y,'rs',x,y1(:,1),'b.')
xlabel('$x$'); ylabel('$y$');
title(['J = ' num2str(J) ', ' '2M = ' num2str(N)])
legend('Exact','WHM', 'RGK')
axis([-oft 1+oft min(yexact)-oft max(yexact)+oft])
% Absolute errors
rRGK = abs(y1(:,1) - yexact');
rWHM = abs(y - yexact');
rRW = abs(y - y1(:,1));
% fig:02
figure('color','w')
plot(x,rRGK,'b.-',x,rWHM,'r.-',x,rRW,'ms-')
xlabel('$x$'); ylabel('Absolute Error');
title('Absolute Error: $\max|y_{numeric} - y_{analytic}|$')
legend('RGK','WHM','Between RGK and WHM',...
    'Location','northoutside','Orientation','horizontal')
axis([-oft 1+oft min([rRGK; rWHM; rRW])-oft max([rRGK; rWHM; rRW])+oft])
%% Disp Errors
disp(['error RGK: ' num2str(max(rRGK)) ' error WHM: ' num2str(max(rWHM)) ...
    ' error RW: ' num2str(max(rRW))])
%% Save data
if flag == 1    
    cd 'dat'
    table0 = [x yexact' y y1(:,1)];
    fid = fopen('table0.txt','w');
    fprintf(fid, '%6.2f %6.2f %6.2f %6.2f\n', table0');
    fclose(fid);
    disp('Saved.')

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1] Siraj-ul-Islam, Imran Aziz, Bozidar Sarler, "The numerical solution

     of second-order boundary-value problems by collocation method with

     the Haar wavelets,"Mathematical and Computer Modelling, Vol. 52,

     No. 9-10, 1577-1590, 2012.


[2] Sahoo, Bishnupriya, "A study on solution of differential equations

     using Haar wavelet collocation method, MSc thesis, 2012.


🌈4 Matlab代码实现

相关文章
|
1月前
|
Java 关系型数据库 数据库连接
Mybatis+MySQL动态分页查询数据经典案例(含代码以及测试)
Mybatis+MySQL动态分页查询数据经典案例(含代码以及测试)
28 1
|
1月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
1月前
|
算法
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
40 1
|
1月前
|
算法
m基于OFDM+QPSK和LDPC编译码以及MMSE信道估计的无线图像传输matlab仿真,输出误码率,并用图片进行测试
MATLAB2022a仿真实现了无线图像传输的算法,包括OFDM、QPSK调制、LDPC编码和MMSE信道估计。OFDM抗频率选择性衰落,QPSK用相位表示二进制,LDPC码用于前向纠错,MMSE估计信道响应。算法流程涉及编码、调制、信道估计、均衡、解码和图像重建。MATLAB代码展示了从串行数据到OFDM信号的生成,经过信道模型、噪声添加,再到接收端的信道估计和解码过程,最终计算误码率。
22 1
|
2天前
|
算法 计算机视觉 异构计算
基于FPGA的图像累积直方图verilog实现,包含tb测试文件和MATLAB辅助验证
该内容展示了FPGA实现图像累积直方图的算法。使用Vivado2019.2和matlab2022a,通过FPGA的并行处理能力优化图像处理。算法基于像素值累加分布,计算图像中像素值小于等于特定值的像素个数。核心代码为`test_image`模块,读取二进制图像文件并传递给`im_hist`单元,生成直方图和累积直方图。
|
4天前
|
算法
MATLAB最小二乘法:线性最小二乘、加权线性最小二乘、稳健最小二乘、非线性最小二乘与剔除异常值效果比较
MATLAB最小二乘法:线性最小二乘、加权线性最小二乘、稳健最小二乘、非线性最小二乘与剔除异常值效果比较
14 0
|
18天前
|
算法 安全 Java
java代码 实现AES_CMAC 算法测试
该代码实现了一个AES-CMAC算法的简单测试,使用Bouncy Castle作为安全提供者。静态变量K定义了固定密钥。`Aes_Cmac`函数接受密钥和消息,返回AES-CMAC生成的MAC值。在`main`方法中,程序对给定的消息进行AES-CMAC加密,然后模拟接收ECU的加密结果并进行比较。如果两者匹配,输出"验证成功",否则输出"验证失败"。辅助方法包括将字节转为16进制字符串和将16进制字符串转为字节。
|
19天前
|
存储 人工智能 机器人
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】
【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】
|
1月前
|
测试技术 数据库 Python
python测试代码(二)
python测试代码(二)
19 0
|
1月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证