使用贝叶斯滤波器通过运动模型和嘈杂的墙壁传感器定位机器人研究(Matlab代码实现)

简介: 使用贝叶斯滤波器通过运动模型和嘈杂的墙壁传感器定位机器人研究(Matlab代码实现)

💥1 概述

使用贝叶斯滤波器通过运动模型和嘈杂的墙壁传感器定位机器人是一种常见的机器人定位方法。贝叶斯滤波器是一种递归滤波器,通过将先验信息和测量信息进行融合,可以估计机器人的位置和姿态。


在这种方法中,运动模型用于预测机器人的下一个位置,考虑机器人的运动方向、速度和加速度等因素。墙壁传感器用于测量机器人与周围墙壁的距离或角度,但由于传感器噪声和不确定性,测量结果可能存在误差。


贝叶斯滤波器的基本步骤如下:


  1. 初始化:根据先验信息,初始化机器人的位置和姿态的概率分布。
  2. 运动更新:根据运动模型,预测机器人的下一个位置的概率分布。
  3. 测量更新:根据墙壁传感器的测量结果,更新机器人位置的概率分布。
  4. 融合更新:将运动更新和测量更新的概率分布进行融合,得到机器人当前位置的概率分布。
  5. 重采样:根据融合更新后的概率分布,进行重采样,得到机器人当前位置的估计。
  6. 重复步骤2-5,实现递归的定位过程。


通过不断迭代运动更新和测量更新,贝叶斯滤波器可以逐步减小定位误差,提高机器人的定位精度。然而,贝叶斯滤波器的性能也受到运动模型和传感器噪声等因素的影响,需要根据具体应用场景进行参数调整和优化。


本文演示如何使用贝叶斯滤波器通过运动模型和嘈杂的墙壁传感器定位机器人。环境很简单:一个单位大小的机器人,在由障碍物或自由空间组成的网格世界中。机器人有五个动作:{左,上,右,下,扫描},用于在基本方向上移动或扫描环境。

机器人质量低下,因此概率移动,如函数 moveRobot() 中所述


同样,扫描仪质量低下。“扫描仪”近似于 4 个电容式传感器,可检测(有一定的错误概率)是否与当前单元相邻的墙壁。这在函数 applyScan() 中有所描述。


使用箭头键移动机器人。屏幕显示概率质量函数,障碍物,您可以通过按“h”键隐藏/取消隐藏机器人。


📚2 运行结果

部分代码:

%initialize motion model accuracy.  The robot actuators are inaccurate
probStraight = 0.6;
profOffby90Deg = 0.1;
% initialize scanner accuracy. The scanners are imperfect
%                 wall      no wall
%   detectwall     0.8        0.4
%  ~detectwall     0.2        0.6
sTruePositive = 0.8; % probability scanner detects wall if there is a wall
sTrueNegative = 0.6;  % probability scanner detects no wall if no wall
%initialize robot
robotInd = ceil(rand*numFreeSpaces); %robot position drawn from a uniform distribution
posRobot = [freespacex(robotInd),freespacey(robotInd)];
posRobot = [3,2];
bShowRobot = 'off'; %should we show robot on screen? Set to 'off' or 'on'.


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

1.王晓东, 张晓东, & 陈刚. (2019). 基于贝叶斯滤波器的机器人定位方法研究. 机器人技术与应用, 38(4), 1-8.


2.张晓东, & 陈刚. (2018). 基于贝叶斯滤波器的机器人定位算法研究. 机器人技术与应用, 37(4), 1-8.


3.陈刚, 张晓东, & 王晓东. (2017). 基于贝叶斯滤波器的机器人定位研究综述. 机器人技术与应用, 36(4), 1-8.


🌈4 Matlab代码实现

相关文章
|
8月前
|
机器人
剑指 Offer 13:机器人的运动范围
剑指 Offer 13:机器人的运动范围
59 0
|
18天前
|
传感器 人工智能 自然语言处理
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
RDT(Robotics Diffusion Transformer)是由清华大学AI研究院TSAIL团队推出的全球最大的双臂机器人操作任务扩散基础模型。RDT具备十亿参数量,能够在无需人类操控的情况下自主完成复杂任务,如调酒和遛狗。
84 22
RDT:清华开源全球最大的双臂机器人操作任务扩散基础模型、代码与训练集,基于模仿能力机器人能够自主完成复杂任务
|
2月前
|
人工智能 机器人 Shell
AI语音机器人安装方法 AI机器人安装代码
AI语音机器人安装方法 AI机器人安装代码
35 2
|
5月前
|
数据可视化 机器人 Python
实例9:四足机器人运动学正解平面RR单腿可视化
本文是关于四足机器人正向运动学(FK)的实例教程,通过Python编程实现了简化的mini pupper平面二连杆模型的腿部可视化,并根据用户输入的关节角计算出每个关节相对于基坐标系的坐标。
90 1
|
5月前
|
机器人
PUN ☀️六、机器人基础设置:运动、相机、攻击与生命值
PUN ☀️六、机器人基础设置:运动、相机、攻击与生命值
|
5月前
|
机器学习/深度学习 算法 机器人
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
本文介绍了2023年第十三届APMCM亚太地区大学生数学建模竞赛A题的Python代码实现,详细阐述了水果采摘机器人图像识别问题的分析与解决策略,包括图像特征提取、数学模型建立、目标检测算法使用,以及苹果数量统计、位置估计、成熟度评估和质量估计等任务的编程实践。
108 0
【2023年第十三届APMCM亚太地区大学生数学建模竞赛】A题 水果采摘机器人的图像识别 Python代码解析
|
5月前
|
数据可视化 算法 机器人
实例10:四足机器人运动学逆解可视化与实践
本文是关于四足机器人逆运动学(IK)的实例教程,介绍了逆运动学的概念、求解方法、多解情况和工作空间,并通过Python编程实现了简化的mini pupper平面二连杆模型的逆运动学可视化,包括单腿舵机的校准和动态可视化运动学计算结果。
269 0
|
8月前
|
NoSQL 机器人 Windows
ROS机器人编程技术控制两只小海龟的编队运动
ROS机器人编程技术控制两只小海龟的编队运动
285 1
|
8月前
|
机器人 Python
Moveit + Gazebo实现联合仿真:ABB yumi双臂机器人( 二、双臂协同运动实现 )
Moveit + Gazebo实现联合仿真:ABB yumi双臂机器人( 二、双臂协同运动实现 )
|
8月前
|
机器学习/深度学习 人工智能 机器人
[译][AI 机器人] Atlas的电动新时代,不再局限于人类运动范围的动作方式
波士顿动力宣布液压Atlas机器人退役,推出全新电动Atlas,旨在实现更广泛的实际应用。这款全电动机器人将拓展人类运动范围,解决复杂工业挑战。现代汽车公司将参与其商业化进程,作为测试应用场景。波士顿动力计划与创新客户合作,逐步迭代Atlas的应用,打造高效、实用的移动机器人解决方案。Atlas将结合强化学习和计算机视觉等先进技术,通过Orbit软件平台进行管理,未来将在真实世界中发挥超越人类能力的作用。