基于串行和并行ADMM算法在分布式调度中的应用(Matlab代码实现)

简介: 基于串行和并行ADMM算法在分布式调度中的应用(Matlab代码实现)

💥1 概述

参考文献:


目前,国内外学者针对电力流与天然气流协同优化问题已经开展了许多研究。文献[7]建立了一


种考虑安全约束的电—气能量流混合整数规划模型,运用基于线性灵敏因子的迭代算法可同时求解


得到满足 N - 1 约束的电力和天然气网络最优潮流。美国工程院院士 M. Shahidehpour 领导的团队建立了计及天然气网络约束的输电网安全约束机组组合模型,从购气价格、用气需求和输气管道故障等方面分析了天然气系统对电力系统安全经济运行的影响[8-9]。苏黎世联邦理工大学 G. Anderson 教授提出耦合能源中心的多能流网络集成调度方法,采用耦合矩阵和调度因子分别描述能源中心内多能流(如电、气、热)的相互转化和负荷分配[10]。国内清华大学、河海大学等也开展了初步研究工作[11-12]。上述工作通常假定电力与天然气系统垄断运营,由唯一的决策主体(联合调度中心)进行电力流与天然气流的统一优化决策。这种仅含单个决策主体的集中式优化模型与现实中电力和天然气系统一般由不同的运营商负责经营管理并不一致。实际上,两个系统间仅支持少量数据交互,要通过联合调度中心来获得整个电—气互联能源系统的全局信息是相当困难的。这个问题亟须针对电力流与天然气流的实际决策特点———多主体自治决策,运用分布式协同优化手段来解决[13]。


📚2 运行结果

2.1 Jacobi

上图横坐标是迭代次数,纵坐标是总网损。

上图横坐标是迭代次数,纵坐标是误差。  

2.2 GS_general


2.3 GS_in_paper

部分代码:

%%ADMM主程序
%%串行计算
clear
clc
%%%区域a,节点33,1-7,18-25
%%耦合为Xa=[U(6),U(7),P(7),Q(7),U(5),U(25),P(25),Q(25)]
Line_a=[1,2,3,4,5,6,7,18,19,20,21,22,23,24,25];
Node_a=[33,1,2,3,4,5,6,18,19,20,21,22,23,24,25];
%%%区域b,节点6-17
%%耦合为Xb=[U(6),U(7),P(7),Q(7)]
Line_b=[7,8,9,10,11,12,13,14,15,16,17];
Node_b=[6,7,8,9,10,11,12,13,14,15,16,17];
%%%区域c,节点5,25-32
%%耦合为Xb=[U(5),U(25),P(25),Q(25)]
Line_c=[25,26,27,28,29,30,31,32];
Node_c=[5,25,26,27,28,29,30,31,32];
%%%%首轮求解
Ploss_data=zeros(32,1);
Volta_data=zeros(33,1);
Qg_data=zeros(33,1);
xigma=0;lagrant_a=[0;0;0;0;0;0;0;0];lagrant_b=[0;0;0;0];lagrant_c=[0;0;0;0];
Xa_last=[0;0;0;0;0;0;0;0];
[Xa,Ploss,Volta,Qg]=program_a(lagrant_a,xigma,Xa_last);
Ploss_data(Line_a)=Ploss(Line_a);Volta_data(Node_a)=Volta(Node_a);Qg_data(Node_a)=Qg(Node_a);
Xb_last=Xa(1:4);xigma=0.1;
[Xb,Ploss,Volta,Qg]=program_b(lagrant_b,xigma,Xb_last);
Ploss_data(Line_b)=Ploss(Line_b);Volta_data(Node_b)=Volta(Node_b);Qg_data(Node_b)=Qg(Node_b);
Xc_last=Xa(5:8);
[Xc,Ploss,Volta,Qg]=program_c(lagrant_c,xigma,Xc_last);
Ploss_data(Line_c)=Ploss(Line_c);Volta_data(Node_c)=Volta(Node_c);Qg_data(Node_c)=Qg(Node_c);
Xa_last=[Xb;Xc];
lagrant_a=lagrant_a+xigma*(Xa-Xa_last);lagrant_b=lagrant_a(1:4);lagrant_c=lagrant_a(5:8);
figure(1)%目标函数
plot(1,sum(Ploss_data),'r*')
hold on
figure(2)%对偶误差
plot(1,norm(Xa-Xa_last,2)^2,'b*-');
hold on
%%%%迭代
for k=1:100
    [Xa,Ploss,Volta,Qg]=program_a(lagrant_a,xigma,Xa_last);
    Ploss_data(Line_a)=Ploss(Line_a);Volta_data(Node_a)=Volta(Node_a);Qg_data(Node_a)=Qg(Node_a);
    Xb_last=Xa(1:4);
    [Xb,Ploss,Volta,Qg]=program_b(lagrant_b,xigma,Xb_last);
    Ploss_data(Line_b)=Ploss(Line_b);Volta_data(Node_b)=Volta(Node_b);Qg_data(Node_b)=Qg(Node_b);
    Xc_last=Xa(5:8);
    [Xc,Ploss,Volta,Qg]=program_c(lagrant_c,xigma,Xc_last);
    Ploss_data(Line_c)=Ploss(Line_c);Volta_data(Node_c)=Volta(Node_c);Qg_data(Node_c)=Qg(Node_c);
    Xa_last=[Xb;Xc];
    lagrant_a=lagrant_a+xigma*(Xa-Xa_last);lagrant_b=lagrant_a(1:4);lagrant_c=lagrant_a(5:8);
    figure(1)
    plot(k+1,sum(Ploss_data),'r*');
    figure(2)
    plot(k+1,norm(Xa-Xa_last,2)^2,'b*-');
    Ploss_total=sum(Ploss_data)
gap=norm(Xa-Xa_last,2)^2
end
Ploss_total=sum(Ploss_data)
gap=norm(Xa-Xa_last,2)^2 


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]瞿小斌,文云峰,叶希等.基于串行和并行ADMM算法的电—气能量流分布式协同优化[J].电力系统自动化,2017,41(04):12-19.


[2]梁俊文,林舜江,刘明波.主动配电网分布式无功优化控制方法[J].电网技术,2018,42(01):230-237.DOI:10.13335/j.1000-3673.pst.2017.1331.


🌈4 Matlab代码实现

相关文章
|
7天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
12天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
15天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
202 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
129 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
下一篇
无影云桌面