基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)

简介: 基于遗传算法的微电网调度(风、光、蓄电池、微型燃气轮机)(Matlab代码实现)

参考文献


微电网作为智能电网的一部分,是分布式电源接入电网的一种有效手段,微电网经济运行是其中一个重要研究方面。考察微电网经济性,通常是从最小运行成本和最小环境污染物排放成本两方面入手进行微电网的多目标优化,通过给适应度函数设置权重系数,将多目标函数转换为单目标函数。结合具体的微电网系统算例进行了仿真研究,结果显示: 运用权重系数法能够使优化目标中经济成本与环境成本达到一个相对平衡的状态,实现了微电网经济运行。


1 绪论

全球各个国家都面临着能源不足的问题,各种可再生能源得到了广泛关注。微电网( Micro-


Grid) 的出现为这些可再生能源的整合提供了一 种方法[1]。微电网是由负荷和各种分布式电源


( 如光伏、风力发电等) 共同组成的系统,同时可以提供热能和电能。微电网有并网与孤岛两种运


行模式,两种模式的平滑切换[2]增加了微电网运行的可靠性,有效降低了发电成本。


本文中的微电网包括微型燃气轮机( MT) 、 燃料电池( FC) 、光伏( PV) 、风机( WT) 、蓄电池


( SB) ,建立了热电联产型微电网模型,针对微电网并网运行,采用遗传算法对微电网进行多目标


优化。运用以热定电的策略,首先让燃气轮机 ( MT) 满足用户热量的同时提供电能,再优先利


用可再生能源发电,以最小化经济成本和最少环境污染物排放成本为目标函数,运用权重系数法


把多目标函数变为单目标函数,结合具体算例实现微电网经济运行。


2 微电网电源模型

1.1 微型燃气轮机( MT)

微型燃气轮机利用天然气、沼气等多种燃料提供热能与电能。燃气轮机的冷热电三联供系统

( CCHP) 的示意图如图 1 所示。温度高的、有较 多可用能量的来发电,温度比较低的经过溴化锂

机组来制冷或者供热,提高了能源利用率,有助于提高经济效益和环境效益。


                           图 1 微型燃气轮机的冷热电三联供示意图

       


1.2  燃料电池( FC)

燃料电池是将化学能转换为电能的装置,不受卡诺循环限制,电能转化率高,清洁、噪声小,

因此很适用于做分布式电源。燃料电池发电成本为:


1.3  光伏电池( PV)

光伏电池将太阳能转化为直流电能,其是一 种非线性电能,电压与电流随着光照强度和温度

的改变呈现出非线性。得出其输出功率为:

                 

                                 

1.4  风力发电( WT)

风力发电是利用风电机组叶片从风中获得能量转换为机械能,然后传送给发电机,转化为电

能,因此风力发电燃料成本和气体排放治理成本为 0。风力发电机组的输出功率与风速有关:

                                   


1.5  蓄电池储能( SB)

微电网中蓄电池充放电过程交替进行,充电达到额定容量后进入放电过程,放电达到 SOC

( 荷电状态) 为额定容量的 30% 时,停止放电,进入充电。


2 微电网的运行优化

2.1 目标函数

( 1) 运行成本目标函数为

                   

                             

2.2  约束条件

                           

3 程序框图

遗传算法( Genetic Algorithm) 是一种通过模拟自然进化过程搜索最优解的方法。它具有组织


性、自适应性和学习性,利用种群的进化总结信息自行搜索,采用概率变迁规则来指导搜索方向,已被广泛用于电力规划领域。


多目标遗传算法( MOGA) 指的是存在多个目标需要同时优化寻求出一组最优解。在实际运算


中对多个目标优化而不能兼顾搜索全局,导致了最优解的遗失,往往是因为权重系数设置不合理。


事先并不知道设置为多少合适,只能做估计和试探,这种做法往往影响了优化结果。本文所采用


的是均值自适应法选取权重系数,算法流程图如图所示


                             

4 运行结果

部分代码:

%% 基于遗传算法的微电网调度(风、光、储能、微型燃气轮机)
clc
clear
tic;
close all
%% 遗传算法参数
MAXGEN=200;                         %进化代数
sizepop=40;                       %种群规模
pcross=0.6;                      %交叉概率
pmutation=0.01;                  %变异概率
lenchrom=ones(1,48);             %变量字串长度,48个变量
%% 导入数据
global Load pv wt price
Load=load('典型日负荷.txt');%负荷
pv=load('PV.txt');%光伏发电
wt=load('WT.txt');%风力发电
price=load('电价.txt');%电价
。。。。。
%% 交叉操作
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
% pcorss                input  : 交叉概率
% lenchrom              input  : 染色体的长度
% chrom                 input  : 染色体群
% sizepop               input  : 种群规模
% ret                   output : 交叉后的染色体
for i=1:sizepop 
    % 随机选择两个染色体进行交叉
    pick=rand(1,2);
    while prod(pick)==0
        pick=rand(1,2);
    end
    index=ceil(pick.*sizepop);
    % 交叉概率决定是否进行交叉
    pick=rand;
    while pick==0
        pick=rand;
    end
    if pick>pcross
        continue;
    end
    flag=0;
    while flag==0
        % 随机选择交叉位置
        pick=rand;
        while pick==0
            pick=rand;
        end
        pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
        pick=rand; %交叉开始
        v1=chrom(index(1),pos);
        v2=chrom(index(2),pos);
        chrom(index(1),pos)=pick*v2+(1-pick)*v1;
        chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
        flag1=test(lenchrom,bound,chrom(index(1),:));  %检验染色体1的可行性
        flag2=test(lenchrom,bound,chrom(index(2),:));  %检验染色体2的可行性
        if   flag1*flag2==0
            flag=0;
        else flag=1;
        end    %如果两个染色体不是都可行,则重新交叉
    end
end
ret=chrom;


5 Matlab代码实现

👨‍🎓博主课外兴趣:中西方哲学,送予读者:


👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“真理”上的尘埃吧。


    或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎


相关文章
|
2月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
3月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
5月前
|
存储 算法 调度
基于和声搜索算法(Harmony Search,HS)的机器设备工作最优调度方案求解matlab仿真
通过和声搜索算法(HS)实现多机器并行工作调度,以最小化任务完成时间。在MATLAB2022a环境下,不仅输出了工作调度甘特图,还展示了算法适应度值的收敛曲线。HS算法模拟音乐家即兴创作过程,随机生成初始解(和声库),并通过选择、微调生成新解,不断迭代直至获得最优调度方案。参数包括和声库大小、记忆考虑率、音调微调率及带宽。编码策略将任务与设备分配映射为和声,目标是最小化完成时间,同时确保满足各种约束条件。
|
6月前
|
算法 网络性能优化 调度
基于De-Jitter Buffer算法的无线网络业务调度matlab仿真,对比RR调度算法
1. **功能描述**: 提出了一个去抖动缓冲区感知调度器,结合用户终端的缓冲状态减少服务中断。该算法通过动态调整数据包发送速率以优化网络延迟和吞吐量。 2. **测试结果**: 使用MATLAB 2022a进行了仿真测试,结果显示De-Jitter Buffer算法在网络拥塞时比RR调度算法更能有效利用资源,减少延迟,并能根据网络状态动态调整发送速率。 3. **核心程序**: MATLAB代码实现了调度逻辑,包括排序、流量更新、超时和中断处理等功能。 仿真结果和算法原理验证了De-Jitter Buffer算法在无线网络调度中的优势。
|
7月前
|
算法 调度
基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
`MATLAB2022a`仿真实现PPNSA+扰动算子的车间调度优化,支持工件和机器数量调整,输出甘特图与收敛曲线。算法针对JSSP,采用启发式策略应对NP难问题,最小化最大完工时间。[图:算法流程示意图]
|
3天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
3天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
13天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
14天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
14天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。

热门文章

最新文章