基于CVX凸优化的电动汽车充放电调度matlab仿真

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。

1.程序功能描述
基于CVX凸优化的电动汽车充放电调度.仿真输出无电动汽车充电时的负载,电动汽车充电时cvx全局优化求解后的总负载,电动汽车充电时cvx局部优化求解后的总负载,纯电动汽车充电时总负载。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg

3.核心程序

cvx_begin
    variable v_x(Nvars);
    minimize(  k0*sum(pow_p(v_x(1:Nslot),1)) + (k1/2)*sum(pow_p(v_x(1:Nslot),2)) + beta*sum(square(F1)*square(v_x(Nslot+1:Nvars)))-k0*sum(pow_p(Load_basic0(1:Nslot),1)) - (k1/2)*sum(pow_p(Load_basic0(1:Nslot),2)) )
    % 目标函数和约束条件
    Eq_L * v_x == Eq_R;
    Ij1 * v_x <= Ij2;
    Ij3 * v_x <= Ij4;
    Ij5 * v_x <= Ij6;
    v_x >= Xmin;
    v_x <= Xmax;
cvx_end
................................................................................
% 绘制不包括电动汽车充电的基础负载
figure;
plot(1:Nslot,Load_basic0,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1:Nslot,VE_load(:,3),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);
hold on
plot(1:Nslot,Charged_Load(:,3),'-b^',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.2,0.9,0.5]);
hold on
plot(1:Nslot,N_Charged_Load(:,3),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
ylabel('负载 [KW]');
xlabel('小时.');
legend('无电动汽车充电时的负载','电动汽车充电时cvx全局优化求解后的总负载','电动汽车充电时cvx局部优化求解后的总负载','纯电动汽车充电时总负载');

clc; 
Result(:,1) = Load_basic0;
Result(:,2) = VE_load(:,3);
Result(:,3) = Charged_Load(:,3);
Result(:,4) = N_Charged_Load(:,3);

% 总充电能量
total_charged=0;
for i=1:Ncar
    total_charged=total_charged+ (bat_Cap1-E_Charged(i,1));
end
fprintf('应充电能量总量 %g.\n\n',total_charged);
fprintf('实际充电能量总量:全局最优方案=%g, 局部最优方案=%g, 等额分配方案=%g.\n\n',sum(Result(:,2)-Result(:,1)), sum(Result(:,3)-Result(:,1)), sum(Result(:,4)-Result(:,1)) );


% 负载峰值
Peak_based=max(Load_basic0); % 基础负载
Peak_Charged=max(Charged_Load(:,3)); % 充电后的负载
Peak_reduction=(Peak_based-Peak_Charged)/Peak_based;
fprintf('峰值比较:基础负载=%g, 全局最优方案=%g, 局部最优方案=%g, 等额分配方案=%g KW.\n\n',max(Result(:,1)), max(Result(:,2)), max(Result(:,3)), max(Result(:,4)) );
31
AI 代码解读

4.本算法原理
随着电动汽车(Electric Vehicles, EVs)的普及,其充放电调度问题成为了研究热点。合理的充放电调度不仅可以满足用户的出行需求,还可以对电网的负荷进行平抑,减少电网的峰谷差,提高电网的稳定性。CVX是一个用于解决凸优化问题的MATLAB软件包,它可以方便地描述和解决各种凸优化问题,包括电动汽车的充放电调度问题。

4.1 CVX凸优化
CVX是一个用于解决凸优化问题的Matlab工具箱,它能够自动转换凸优化问题为标准形式,并利用先进的内点法求解。在电动汽车充放电调度问题中,可以使用CVX定义和解决上述优化问题。具体步骤包括:

定义优化变量:充电和放电功率。

构建目标函数和约束条件。

调用CVX求解器求解。

   CVX是一个用于解决凸优化问题的建模系统,它能够方便地表述和解决各种凸优化问题。凸优化是优化问题的一个重要分支,一旦找到了一个局部最优解,那么这个解也一定是全局最优的。这使得凸优化问题在实际应用中具有非常重要的价值。

   CVX支持多种类型的凸优化问题,包括线性规划(LPs)、二次规划(QPs)、二阶锥规划(SOCPs)和半定规划(SDPs)等。此外,它还可以解决更复杂的凸优化问题,如不可微函数(如L1范数)的优化、约束范数最小化、熵最大化、行列式最大化等。CVX也支持求解混合整数凸规划(MIDCPs)问题。

   在使用CVX时,用户需要定义优化问题,包括目标函数和约束条件。目标函数必须是凸的,而约束函数必须是凸的或仿射的。CVX使用了一种特殊的语法来描述这些问题,例如使用“minimize”语句定义目标函数,使用“subject to”语句定义约束条件。此外,CVX还提供了丰富的函数库和工具箱,方便用户进行建模和求解。
AI 代码解读

4.2 电动汽车充放电调度
基于CVX凸优化的电动汽车充放电调度方法可以有效地平抑电网的负荷峰值,提高电网的稳定性。通过合理地调度电动汽车的充放电行为,可以满足用户的出行需求,同时降低用户的充电成本。未来可以进一步研究多目标优化、不确定性处理等问题,以完善电动汽车的充放电调度方法。

目录
打赏
0
1
1
0
212
分享
相关文章
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
BOC调制信号matlab性能仿真分析,对比功率谱,自相关性以及抗干扰性
本内容介绍了一种基于BOC(Binary Offset Carrier)调制的算法,使用Matlab2022a实现。完整程序运行效果无水印,核心代码配有详细中文注释及操作步骤视频。理论部分阐述了BOC调制在卫星导航中的应用优势:相比BPSK调制,BOC信号功率谱主瓣更窄、自相关函数主峰更尖锐,可优化旁瓣特性以减少干扰,提高频谱利用率和同步精度,适合复杂信道环境下的信号接收与处理。
基于ECC簇内分组密钥管理算法的无线传感器网络matlab性能仿真
本程序基于ECC(椭圆曲线密码学)簇内分组密钥管理算法,对无线传感器网络(WSN)进行MATLAB性能仿真。通过对比网络通信开销、存活节点数量、网络能耗及数据通信量四个关键指标,验证算法的高效性和安全性。程序在MATLAB 2022A版本下运行,结果无水印展示。算法通过将WSN划分为多个簇,利用ECC生成和分发密钥,降低计算与通信成本,适用于资源受限的传感器网络场景,确保数据保密性和完整性。
|
9月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
332 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
201 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
284 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等