MATLAB|时序数据中的稀疏辅助信号去噪和模式识别

简介: MATLAB|时序数据中的稀疏辅助信号去噪和模式识别

一、概述

本文通过结合线性时不变滤波器、正交多分辨率表示和基于稀疏性的方法,解决了处理批处理模式时间序列数据时的信号去噪和模式识别问题。利用数字滤波器状态空间表示的频谱变换,将高阶零相低通、高通和带通无限脉冲响应滤波器设计为矩阵的新方法。还提出了一种基于近端梯度的技术,用于对一类特殊的零相位高通和带通数字滤波器进行因式分解,以便因式分解积保持滤波器的零相性质,并在信号模型中加入输入的稀疏导数分量。为了展示本文新颖的滤波器设计的应用,验证并提出了新的信号模型,以同时去噪和识别感兴趣的模式。首先使用我们提出的滤波器设计来测试现有的信号模型,该模型同时结合了线性时间不变(LTI)滤波器和基于稀疏性的方法。将本文提出的滤波器设计与现有信号模型相结合,开发了一种称为稀疏性辅助信号去噪(SASD)的新信号模型。使用仿真数据,证明了SASD信号模型在不同阶次滤波器和噪声水平下的鲁棒性。此后,提出并推导出一种称为稀疏性辅助模式识别(SAPR)的新信号模型。在SAPR中,还将LTI带通滤波器和基于稀疏性的方法与正交多分辨率表示(如小波)相结合,以检测输入信号中的特定模式。最后,本文将信号去噪和模式识别任务相结合,并推导出一种称为稀疏性辅助信号去噪和模式识别(SASDPR)的新信号模型。分别使用睡眠脑电图数据来检测K复合物和睡眠纺锤体,从而说明了SAPR和SASDPR框架的功能。


二、算例及仿真

📢算例一:

稀疏辅助信号去噪( SASD )算法同时结合全变差去噪和低通滤波对含噪信号进行滤波,从而保持了信号的不连续性。

             

📢算例二:

使用带状矩阵演示零相位滤波的示例:

         

📢算例三:

稀疏辅助信号去噪( SASD )算法同时结合全变差去噪和低通滤波对含噪信号进行滤波,从而保持了信号的不连续性。在这个例子中,我们使用LPF、TVD、SASS和SASD对心电信号进行去噪:

         

📢算例四:

稀疏辅助信号去噪和模式识别 (SASDPR) 将同时去噪和检测给定信号中感兴趣的振荡模式:

         

📢算例五:

稀疏辅助信号去噪和模式识别 (SASDPR) 将同时去噪和检测给定信号中感兴趣的振荡模式:

           

📢算例六:

稀疏辅助模式识别 (SAPR) 将检测信号中的小波模式:

       

三、Matlab代码实现

部分代码:

function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end


function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end
function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end
function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end
相关文章
|
11天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
17天前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
112 0
|
2月前
|
机器学习/深度学习 Dragonfly 人工智能
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
基于蜻蜓算法优化支持向量机(DA-SVM)的数据多特征分类预测研究(Matlab代码实现)
|
17天前
|
机器学习/深度学习 数据采集 算法
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
【信号识别】识别半监督粗糙模糊拉普拉斯特征图(Matlab代码实现)
|
2月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
|
1月前
|
安全 算法 自动驾驶
使用SSTL规范控制信号化交叉口研究(Matlab代码实现)
使用SSTL规范控制信号化交叉口研究(Matlab代码实现)
|
17天前
|
机器学习/深度学习 算法 语音技术
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
【语音分离】通过分析信号的FFT,根据音频使用合适的滤波器进行语音信号分离(Matlab代码实现)
|
17天前
|
传感器 机器学习/深度学习 算法
【室内导航通过视觉惯性数据融合】将用户携带的智能手机收集的惯性数据与手机相机获取的视觉信息进行融合研究(Matlab代码实现)
【室内导航通过视觉惯性数据融合】将用户携带的智能手机收集的惯性数据与手机相机获取的视觉信息进行融合研究(Matlab代码实现)
|
25天前
|
算法 数据挖掘 定位技术
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
基于密度的聚类算法能够在含有噪声的数据集中识别出任意形状和大小的簇(Matlab代码实现)
|
1月前
|
传感器 算法 机器人
【IMU数据与GPS融合的预积分方法】基于流形的IMU预积分,用于高效的视觉惯性最大后验估计、SE3姿势区分为IMU(Matlab代码实现)
【IMU数据与GPS融合的预积分方法】基于流形的IMU预积分,用于高效的视觉惯性最大后验估计、SE3姿势区分为IMU(Matlab代码实现)

热门文章

最新文章