MATLAB|时序数据中的稀疏辅助信号去噪和模式识别

简介: MATLAB|时序数据中的稀疏辅助信号去噪和模式识别

一、概述

本文通过结合线性时不变滤波器、正交多分辨率表示和基于稀疏性的方法,解决了处理批处理模式时间序列数据时的信号去噪和模式识别问题。利用数字滤波器状态空间表示的频谱变换,将高阶零相低通、高通和带通无限脉冲响应滤波器设计为矩阵的新方法。还提出了一种基于近端梯度的技术,用于对一类特殊的零相位高通和带通数字滤波器进行因式分解,以便因式分解积保持滤波器的零相性质,并在信号模型中加入输入的稀疏导数分量。为了展示本文新颖的滤波器设计的应用,验证并提出了新的信号模型,以同时去噪和识别感兴趣的模式。首先使用我们提出的滤波器设计来测试现有的信号模型,该模型同时结合了线性时间不变(LTI)滤波器和基于稀疏性的方法。将本文提出的滤波器设计与现有信号模型相结合,开发了一种称为稀疏性辅助信号去噪(SASD)的新信号模型。使用仿真数据,证明了SASD信号模型在不同阶次滤波器和噪声水平下的鲁棒性。此后,提出并推导出一种称为稀疏性辅助模式识别(SAPR)的新信号模型。在SAPR中,还将LTI带通滤波器和基于稀疏性的方法与正交多分辨率表示(如小波)相结合,以检测输入信号中的特定模式。最后,本文将信号去噪和模式识别任务相结合,并推导出一种称为稀疏性辅助信号去噪和模式识别(SASDPR)的新信号模型。分别使用睡眠脑电图数据来检测K复合物和睡眠纺锤体,从而说明了SAPR和SASDPR框架的功能。


二、算例及仿真

📢算例一:

稀疏辅助信号去噪( SASD )算法同时结合全变差去噪和低通滤波对含噪信号进行滤波,从而保持了信号的不连续性。

             

📢算例二:

使用带状矩阵演示零相位滤波的示例:

         

📢算例三:

稀疏辅助信号去噪( SASD )算法同时结合全变差去噪和低通滤波对含噪信号进行滤波,从而保持了信号的不连续性。在这个例子中,我们使用LPF、TVD、SASS和SASD对心电信号进行去噪:

         

📢算例四:

稀疏辅助信号去噪和模式识别 (SASDPR) 将同时去噪和检测给定信号中感兴趣的振荡模式:

         

📢算例五:

稀疏辅助信号去噪和模式识别 (SASDPR) 将同时去噪和检测给定信号中感兴趣的振荡模式:

           

📢算例六:

稀疏辅助模式识别 (SAPR) 将检测信号中的小波模式:

       

三、Matlab代码实现

部分代码:

function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end


function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end
function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end
function [y, f, s, x, w] = generate_signal( fs, sigma )
%% 初始化噪声电平和信号长度
rng('default')
N = 10*fs;
n = 0:N-1;
%% 产生低频合成成分
f = 0.1;
f = sin(2*f/fs*pi*n);      
%% 振荡
s = zeros(size(n));
o = 13;
s(200+(1:fs)) = sin(2*pi*o/fs*(1:fs)) .* hamming(fs)';
%% 稀疏分段常数
x = zeros(size(n));
x(100:110) = -1;
x(400:420) = 1;
%% 添加噪音
w = sigma*randn(size(n));
y = f+s+x+w;
end
相关文章
|
1月前
|
数据可视化 数据挖掘
MATLAB - 信号分析器(signalanalyzer-app)
MATLAB - 信号分析器(signalanalyzer-app)
97 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
|
1月前
|
传感器 数据可视化
MATLAB - 读取双摆杆上的 IMU 数据
MATLAB - 读取双摆杆上的 IMU 数据
23 0
|
3月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
77 6
|
3月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。
|
4月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
172 4
|
3月前
|
机器学习/深度学习 算法 语音技术
基于语音信号MFCC特征提取和GRNN神经网络的人员身份检测算法matlab仿真
**语音识别算法概览** MATLAB2022a中实现,结合MFCC与GRNN技术进行说话人身份检测。MFCC利用人耳感知特性提取语音频谱特征,GRNN作为非线性映射工具,擅长序列学习,确保高效识别。预加重、分帧、加窗、FFT、滤波器组、IDCT构成MFCC步骤,GRNN以其快速学习与鲁棒性处理不稳定数据。适用于多种领域。
|
3月前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
3月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
40 0