[模型]多目标规划模型(一)

简介: [模型]多目标规划模型

image.png


视频链接

根据视频整理

视频链接:

7.9数模国赛培训 多目标优化

1 多目标规划模型的概念

多目标规划法(Multi-objective programming,MOP)是一类考虑多因素约束与多目标组合,将定性分析与定量分析相结合的分析决策模型[ 1 ] ^{[1]}[1]。其基本模型包括目标函数和约束条件两部分。

[1] 张业涌,刘德平,邹敏科,梁禧健.基于聚类分析与多目标规划的新疆旅游线路优化设计与研究[J].甘肃科技纵横,2022,51(01):64-68.

2 多目标规划模型的相关概念

2.1 定义一

image.png

向量u和v为多目标规划问题的解集。

一个解集优于另一个解集,(以最小值为例)需要满足一个解集中的所有解小于等于另一个解集中的所有解,同时还要满足较优的那个解集存在一个解小于小于另一个解集中的一个解。

$u = (u_{1}, u_{2}, ..., u_{m})$
$v = (v_{1}, v_{2}, ..., v_{m})$
$u_{i} \le v_{i}, i = 1, 2, ..., m$
$\exists j \in\{1,2, \cdots, m\}, u_{j}<v_{j}$

2.2 定义二

image.png

Ω \OmegaΩ为在约束条件下,自变量可以取到的值组成的集合,即可行解组成的集合,也叫决策空间。

向量x 1 x_{1}x1x 2 x_{2}x2为多目标规划问题的各个自变量(最优解的影响因素)组成的向量。

自变量向量x 1 x_{1}x1优于x 2 x_{2}x2,是指当影响因素的取值为x 1 x_{1}x1时,所有目标函数的取值都要小于等于当影响因素的取值为x 2 x_{2}x2时的目标函数的取值,同时其中任意一个目标函数的取值需要满足取值为x 1 x_{1}x1值小于取值为x 2 x_{2}x2

$x_{1}, x_{2} \in \Omega$
$$\left\{\begin{array}{l}
f_{i}\left(x_{1}\right) \leq f_{i}\left(x_{2}\right), \forall i \in\{1,2, \cdots, m\} \\
f_{j}\left(x_{1}\right)<f_{j}\left(x_{2}\right), \exists j \in\{1,2, \cdots, m\}
\end{array}\right.$$
$(f_{1}(x_{1}), f_{2}(x_{1}), ..., f_{m}(x_{1}))$
$(f_{1}(x_{2}), f_{2}(x_{2}), ..., f_{m}(x_{2}))$
$x_{1}$
$x_{2}$
• 1
• 2
• 3
• 4
• 5
• 6
• 7
• 8
• 9

2.3 定义三

如果Ω中没有支配(优于)x 的解,则称 x 是问题的一个 Pareto最优解(非劣解、有效解、非支配解)。

Pareto最优解的全体被称作Pareto最优解集;Pareto最优解集在目标函数空间的像集称为Pareto Front(Pareto前沿,阵(界)面)。

如图所示:

在A,B,C,D,E,F,H,G中,H点和G点是最优的:它们相应的自变量向量没有被任何其它的自变量向量所支配。这也就意味着在任何一个目标上它们都不能被其它个体支配。这样的解被称为Pareto最优解,有时也称作非劣最优解,非支配解。

判断自变量向量的优劣

以需要判断的自变量向量所在的点(如,B点)为原点绘制坐标轴:

假设目标函数求解的为最小值。

图中,阴影取内的点所代表的自变量向量都优于B,而左下角的点所代表的自变量向量都劣于B;左上角的点所代表的自变量向量与右下角的点所代表的自变量向量和B点无法进行比较,是由于左上角的点在横坐标上优于B在纵坐标上劣于B,右下角的点与之相反,所以无法进行比较,可以认为一样优(好)。

3 引言与引例

3.1 引言

在实际问题中,经常遇到需要 使多个目标在给定区域上均尽可能最佳的优化问题

例如:

设计一辆汽车,既要安全(重量大),又要经济(油耗小)。

设计一个导弹,既要射程最远,又要燃料最省,还要精度最高。

这种 多于一个的目标函数在给定区域上的最优化问题 就称为多目标优化(multi-objective optimization)问题。

不同于单目标优化,在多目标优化中, 各目标之间是互相冲突 ,导致 不一定存在在所有目标上都是最优的解 。某个解可能在一个目标上是最优的但在另一个上是最差的。( 判断多目标优化问题的关键 )

如果在一个目标上越优,在另一个目标上也越优,可以通过变换转换为单目标优化,所有该种情况不为多目标优化。

例如:

要使汽车安全性高,必然重量大,从而油耗高,经济性差;

要使汽车经济性好,即油耗小,必然要求重量轻,从而安全性低。

因此,多目标优化问题通常存在一个解的集合,它们之间不能简单地比较好坏,这样的解称为非支配解(有效解)或Pareto最优解。

非支配解(有效解)或Pareto最优解 在 多目标规划模型的相关概念 中有相关的定义。

单目标优化只有一个最优解,而多目标优化是一个解的集合,即多目标优化存在多个解。

3.2 引例

3.2.1 引例1 – 生产计划问题

注意能耗的单位;

注意单位的统一。

x 1 x_{1}x1小于等于100,是由于每周的最大销售量为40000,而布料A 1 A_{1}A1每个小时生产400,所以x 1 x_{1}x1小于等于100,x 2 x_{2}x2x 3 x_{3}x3同理。

约束条件一定要写完整,约束条件可能会在题目中直接给出,也可能会隐藏在题目中。

求解最值问题,通常转化为最小值问题,最大值转化为最小值,前面加负号;同理,最小值转化为最大值,也是前面加负号。

F(x) 为目标函数向量。

目录
打赏
0
0
0
0
17
分享
相关文章
北京大学提出 PTQ4ViT | 双均匀量化+Hessian引导度量,推进Transformer模型落地
北京大学提出 PTQ4ViT | 双均匀量化+Hessian引导度量,推进Transformer模型落地
266 1
《数学模型(第五版)》学习笔记(2)第3章 简单的优化模型 第4章 数学规划模型
《数学模型(第五版)》学习笔记(2)第3章 简单的优化模型 第4章 数学规划模型
251 1
《从GRPO看强化学习样本效率的飞跃!》
在强化学习领域,样本效率一直是亟待解决的难题。传统算法如Q学习需海量样本才能让智能体学会有效行为模式,尤其在复杂环境中,这成为应用瓶颈。群组相对策略优化(GRPO)应运而生,通过生成动作序列并进行相对评估,摒弃了价值网络,显著提升了样本利用率和计算效率。GRPO在实际应用中展现了巨大优势,如DeepSeek团队利用其大幅减少了训练样本和成本,提高了模型性能。这一创新为资源受限场景及更多领域的强化学习应用打开了新大门。
130 0
《从GRPO看强化学习样本效率的飞跃!》
《深度解析:深度信念网络DBN降维模型训练要点》
深度信念网络(DBN)在降维任务中表现出色,但正确的模型训练至关重要。DBN由多个受限玻尔兹曼机(RBM)堆叠而成,通过逐层预训练和微调学习数据的低维表示。训练要点包括:数据预处理(归一化、去噪)、参数设置(学习率、隐藏层节点数、训练轮数)、防止过拟合(正则化、数据增强)。每个环节对降维效果都有重要影响,需合理调整以发挥最佳性能。
90 10
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
708 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
高效评估多模态预训练对齐质量,中科大提出模态融合率MIR
中国科学技术大学研究团队提出了一种新的评估指标——模态融合率(MIR),用于评估多模态预训练模型的对齐质量。MIR通过衡量不同模态之间的分布距离,有效反映了模型的对齐质量,并在多种训练配置下表现出良好的鲁棒性和通用性。实验结果表明,MIR能够准确评估训练数据选择、训练策略调度和模型架构设计对预训练结果的影响,为多模态学习提供了可靠的方法。
150 22
深入探讨模型泛化能力的概念、重要性以及如何通过交叉验证来有效评估和提升模型的泛化能力
【6月更文挑战第13天】本文探讨了机器学习中模型泛化能力的重要性,它是模型对未知数据预测的准确性。过拟合和欠拟合影响泛化能力,而交叉验证是评估模型性能的有效工具。通过K折交叉验证等方法,可以发现并优化模型,提高泛化能力。建议包括调整模型参数、选择合适模型、数据预处理、特征选择和集成学习。Python中可利用scikit-learn的cross_val_score函数进行交叉验证。
806 7
|
9月前
精简模型,提升效能:线性回归中的特征选择技巧
在本文中,我们将探讨各种特征选择方法和技术,用以在保持模型评分可接受的情况下减少特征数量。通过减少噪声和冗余信息,模型可以更快地处理,并减少复杂性。
110 5
精简模型,提升效能:线性回归中的特征选择技巧
模型训练实战:选择合适的优化算法
【7月更文第17天】在模型训练这场智慧与计算力的较量中,优化算法就像是一位精明的向导,引领着我们穿越复杂的损失函数地形,寻找那最低点的“宝藏”——最优解。今天,我们就来一场模型训练的实战之旅,探讨两位明星级的优化算法:梯度下降和Adam,看看它们在不同战场上的英姿。
269 5
论文推荐:用多词元预测法提高模型效率与速度
《Better & Faster Large Language Models via Multi-token Prediction》论文提出了一种多词元预测框架,改善了大型语言模型(LLMs)的样本效率和推理速度。该方法通过一次预测多个词元,而非单个词元,提高了模型在编程和自然语言任务中的性能。实验显示,多词元预测在HumanEval和MBPP任务上性能提升,推理速度最高可提升3倍。此外,自我推测解码技术进一步优化了解码效率。尽管在小模型中效果不明显,但该方法为大模型训练和未来研究开辟了新途径。
315 0