Pandas中DataFrame的属性、方法、常用操作以及使用示例(三)

简介: Pandas中DataFrame的属性、方法、常用操作以及使用示例(三)

2.9 shape ---- 返回 DataFrame 对象的维度

l = [
  ['zs', 12, 'm'],
  ['ls', 23, 'm'],
  ['ww', 22, 'm']
]
df1 = pd.DataFrame(
  l, 
  columns=['name', 'age', 'gender'], 
  index=['a', 'b', 'c']
)
print(df1)
print()
print(df1.shape)

2.10 T ---- 返回 DataFrame 对象的转置

l = [
  pd.Series([1,2,3]),
  pd.Series([4,5,6]),
  pd.Series([7,8,9])
]
df = pd.DataFrame(l)
print(df)
print()
print(df.T)

3. DataFrame 的方法

3.1 head() ---- 返回 DataFrame 对象的前 x 行

默认前五行

l = [
  ['zs', 12, 'm'],
  ['ls', 23, 'm'],
  ['ww', 22, 'm']
]
df1 = pd.DataFrame(
  l, 
  columns=['name', 'age', 'gender'], 
  index=['a', 'b', 'c']
)
print(df1)
print()
print(df1.head(1))

3.2 tail() ---- 返回 DataFrame 对象的后 x 行

默认后五行

l = [
  ['zs', 12, 'm'],
  ['ls', 23, 'm'],
  ['ww', 22, 'm']
]
df1 = pd.DataFrame(
  l, 
  columns=['name', 'age', 'gender'], 
  index=['a', 'b', 'c']
)
print(df1)
print()
print(df1.tail(1))

3.3 mean() ---- 求算术平均数

# 生成一个 6 行 3 列的数组
data = np.floor(np.random.normal(85, 3, (6,3)))
df = pd.DataFrame(data)
print(df)
print()
# 默认计算每列的算数平均数
print(df.mean())
print()
# axis 可以指定计算的方向,默认 axis=0 计算每列的算数平均数
print(df.mean(axis=0))
print()
# 计算每行的算数平均数
print(df.mean(axis=1))
print()

3.4 min() max() ---- 求最值

# 生成一个 6 行 3 列的数组
data = np.floor(np.random.normal(85, 3, (6,3)))
df = pd.DataFrame(data)
print(df)
print()
# 默认计算每列的最值
print(df.max())
print(df.min())
print()
# axis 可以指定计算的方向,默认 axis=0 计算每列的最值
print(df.max(axis=0))
print(df.min(axis=0))
print()
# 计算每行的算数平均数
print(df.max(axis=1))
print(df.min(axis=1))
print()

3.5 idxmax() idxmin() ---- 获取最值索引

data = np.floor(np.random.normal(85, 3, (3,2)))
df = pd.DataFrame(data, index=['a', 'b', 'c'], columns=['math', 'chinese'])
print(df)
print()
# 列
print(df.max(), df.idxmax())
print()
print(df.min(), df.idxmin())
print()
# 行
print(df.max(axis=1), df.idxmax(axis=1))
print()
print(df.min(axis=1), df.idxmin(axis=1))

3.6 median() ---- 求中位数

data = np.floor(np.random.normal(85, 3, (3,2)))
df = pd.DataFrame(data, index=['a', 'b', 'c'], columns=['math', 'chinese'])
print(df)
print()
# 列
print(df.median())
print(df.median(axis=0))
print()
# 行
print(df.median(axis=1))

3.7 value_counts() ---- 求频数

以行为统计单元

data = np.floor(np.random.normal(85, 3, (3,2)))
df = pd.DataFrame(data, index=['a', 'b', 'c'], columns=['math', 'chinese'])
print(df)
print()
print(df.value_counts())

3.8 mode() ---- 求众数

data = np.floor(np.random.normal(85, 3, (3,2)))
df = pd.DataFrame(data, index=['a', 'b', 'c'], columns=['math', 'chinese'])
print(df)
print()
print(df.mode())
print()
print(df.mode(axis=1))

3.9 quantile() ---- 求四分位数

四分位数:把数值从小到大排列并分成四等分,处于三个分割点位置的数值就是四分位数。

  • 需要传入一个列表,列表中的元素为要获取的数的对应位置
data = np.floor(np.random.normal(85, 3, (4,3)))
df = pd.DataFrame(data)
print(df)
print()
print(df.quantile([.25, .50, .75, 1]))
print(df.quantile([.25, .50, .75, 1], axis=0))
print(df.quantile([.25, .50, .75, 1], axis=1))


相关文章
|
11天前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
103 0
|
3月前
|
自然语言处理 数据挖掘 数据处理
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
本文将介绍 10 个在数据处理中至关重要的 Pandas 技术模式。这些模式能够显著减少调试时间,提升代码的可维护性,并构建更加清晰的数据处理流水线。
157 3
告别低效代码:用对这10个Pandas方法让数据分析效率翻倍
|
10月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
695 67
|
10月前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
685 10
|
11月前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
560 2
Pandas 数据结构 - DataFrame
|
10月前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
458 4
|
11天前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
199 0
|
2月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
176 0
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
283 1
|
11月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
325 0

热门文章

最新文章