Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。

本文涉及的产品
应用实时监控服务-用户体验监控,每月100OCU免费额度
应用实时监控服务-应用监控,每月50GB免费额度
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
简介: Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。

一、Dask模块简介

Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。Dask的核心思想是将数据划分为多个块(chunks),并在多个计算核心上并行处理这些块。这使得Dask能够处理比Pandas或NumPy更大的数据集,同时保持类似的编程接口。

Dask支持多种数据结构和计算方式,包括数组(Array)、数据框(DataFrame)、序列(Series)和延迟计算(delayed)。在本文中,我们将重点关注DataFrame和延迟计算(delayed)。

二、DataFrame使用示例

1. 导入必要的库

首先,我们需要导入Dask和Pandas库。虽然Dask提供了类似于Pandas的API,但有时候我们仍然需要直接使用Pandas来处理一些较小的数据集或进行某些特定的操作。

import dask.dataframe as dd
import pandas as pd

2. 创建Dask DataFrame

Dask DataFrame可以从多种来源创建,包括CSV文件、Parquet文件、HDFS、SQL数据库等。以下是一个从CSV文件创建Dask DataFrame的示例:

# 假设我们有一个名为'large_file.csv'的CSV文件,它太大而无法一次性加载到内存中
df = dd.read_csv('large_file.csv')

# Dask DataFrame是一个惰性对象,它不会立即加载数据。相反,它会在你执行计算时加载数据
# 你可以通过调用.compute()方法来触发计算并获取结果
result = df.head().compute()  # 获取前几行数据并触发计算
print(result)

3. Dask DataFrame操作

Dask DataFrame提供了与Pandas类似的API,因此你可以使用类似的方法来操作数据。以下是一些示例:

  • 选择列:df['column_name']
  • 过滤行:df[df['column_name'] > value]
  • 分组聚合:df.groupby('column_name').sum()
  • 排序:df.sort_values('column_name')
  • 连接:dd.merge(df1, df2, on='key')

这些操作都是惰性的,它们不会立即执行。相反,它们会创建一个新的Dask DataFrame,该DataFrame表示要执行的计算。要获取实际结果,你需要调用.compute()方法。

三、Delayed使用示例

Delayed是Dask提供的一种更通用的并行计算方式。它允许你定义任意Python函数作为任务,并将这些任务组合成一个有向无环图(DAG),然后并行执行这些任务。

1. 定义任务

首先,你需要定义要并行执行的任务。这些任务可以是任何Python函数。以下是一个简单的示例:

import dask

def inc(x):
    return x + 1

def double(x):
    return x * 2

# 使用dask.delayed装饰器将函数转换为延迟任务
inc_delayed = dask.delayed(inc)
double_delayed = dask.delayed(double)

2. 组合任务

接下来,你可以将延迟任务组合成一个有向无环图(DAG)。在这个图中,每个节点表示一个任务,每个边表示一个依赖关系。以下是一个示例:

# 创建一个值
x = 1

# 创建任务并组合它们
y = inc_delayed(x)
z = double_delayed(y)

# z现在是一个延迟对象,它表示要执行的计算(即(1+1)*2)
# 要获取实际结果,你需要调用.compute()方法
result = z.compute()
print(result)  # 输出:4

在这个示例中,我们首先定义了两个简单的函数incdouble,并使用dask.delayed装饰器将它们转换为延迟任务。然后,我们创建了一个值x,并使用延迟任务来组合计算(1+1)*2。最后,我们调用.compute()方法来触发计算并获取结果。

3. 并行执行

虽然上面的示例只涉及一个计算任务,但Delayed可以处理更复杂的计算图,并在多个计算核心上并行执行这些任务。以下是一个更复杂的示例:

```python
import dask.array as da

创建一个大的随机数组

x = da.random.normal(0, 1, size=(10000, 10000), chunks=(1
处理结果:

一、Dask模块简介

Dask是一个用于并行计算的Python库,它提供了类似于Pandas和NumPy的API,但能够在大型数据集上进行并行计算。Dask的核心思想是将数据划分为多个块(chunks),并在多个计算核心上并行处理这些块。这使得Dask能够处理比Pandas或NumPy更大的数据集,同时保持类似的编程接口。
Dask支持多种数据结构和计算方式,包括数组(Array)、数据框(DataFrame)、序列(Series)和延迟计算(delayed)。在本文中,我们将重点关注DataFrame和延迟计算(delayed)。

二、DataFrame使用示例

1. 导入必要的库

首先,我们需要导入Dask和Pandas库。虽然Dask提供了类似于Pandas的API,但有时候我们仍然需要直接使用Pandas来处理一些较小的数据集或进行某些特定的操作。
python Dask DataFrame可以从多种来源创建,包括CSV文件、Parquet文件、HDFS、SQL数据库等。以下是一个从CSV文件创建Dask DataFrame的示例:python

Dask DataFrame是一个惰性对象,它不会立即加载数据。相反,它会在你执行计算时加载数据

Dask DataFrame提供了与Pandas类似的API,因此你可以使用类似的方法来操作数据。以下是一些示例:

  • 选择列:df['column_name']
    这些操作都是惰性的,它们不会立即执行。相反,它们会创建一个新的Dask DataFrame,该DataFrame表示要执行的计算。要获取实际结果,你需要调用.compute()方法。

    三、Delayed使用示例

    Delayed是Dask提供的一种更通用的并行计算方式。它允许你定义任意Python函数作为任务,并将这些任务组合成一个有向无环图(DAG),然后并行执行这些任务。

    1. 定义任务

    首先,你需要定义要并行执行的任务。这些任务可以是任何Python函数。以下是一个简单的示例:
    ```python
    def inc(x)
    return x + 1
    def double(x)

    return x * 2

    使用dask.delayed装饰器将函数转换为延迟任务

    接下来,你可以将延迟任务组合成一个有向无环图(DAG)。在这个图中,每个节点表示一个任务,每个边表示一个依赖关系。以下是一个示例:
    ```python

    创建任务并组合它们

    z现在是一个延迟对象,它表示要执行的计算(即(1+1)*2)

    3. 并行执行

    虽然上面的示例只涉及一个计算任务,但Delayed可以处理更复杂的计算图,并在多个计算核心上并行执行这些任务。以下是一个更复杂的示例:
    ```python

    创建一个大的随机数组

相关文章
|
2月前
|
XML JSON API
淘宝商品详情API的调用流程(python请求示例以及json数据示例返回参考)
JSON数据示例:需要提供一个结构化的示例,展示商品详情可能包含的字段,如商品标题、价格、库存、描述、图片链接、卖家信息等。考虑到稳定性,示例应基于淘宝开放平台的标准响应格式。
|
3月前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
7天前
|
数据采集 JSON API
Python 实战:用 API 接口批量抓取小红书笔记评论,解锁数据采集新姿势
小红书作为社交电商的重要平台,其笔记评论蕴含丰富市场洞察与用户反馈。本文介绍的小红书笔记评论API,可获取指定笔记的评论详情(如内容、点赞数等),支持分页与身份认证。开发者可通过HTTP请求提取数据,以JSON格式返回。附Python调用示例代码,帮助快速上手分析用户互动数据,优化品牌策略与用户体验。
|
9天前
|
人工智能 搜索推荐 IDE
突破网页数据集获取难题:Web Unlocker API 助力 AI 训练与微调数据集全方位解决方案
本文介绍了Web Unlocker API、Web-Scraper和SERP API三大工具,助力解决AI训练与微调数据集获取难题。Web Unlocker API通过智能代理和CAPTCHA绕过技术,高效解锁高防护网站数据;Web-Scraper支持动态内容加载,精准抓取复杂网页信息;SERP API专注搜索引擎结果页数据抓取,适用于SEO分析与市场研究。这些工具大幅降低数据获取成本,提供合规保障,特别适合中小企业使用。粉丝专属体验入口提供2刀额度,助您轻松上手!
41 2
|
19天前
|
数据采集 搜索推荐 API
Python 原生爬虫教程:京东商品列表页面数据API
京东商品列表API是电商大数据分析的重要工具,支持开发者、商家和研究人员获取京东平台商品数据。通过关键词搜索、分类筛选、价格区间等条件,可返回多维度商品信息(如名称、价格、销量等),适用于市场调研与推荐系统开发。本文介绍其功能并提供Python请求示例。接口采用HTTP GET/POST方式,支持分页、排序等功能,满足多样化数据需求。
|
29天前
|
人工智能 API 开发工具
【AI大模型】使用Python调用DeepSeek的API,原来SDK是调用这个,绝对的一分钟上手和使用
本文详细介绍了如何使用Python调用DeepSeek的API,从申请API-Key到实现代码层对话,手把手教你快速上手。DeepSeek作为领先的AI大模型,提供免费体验机会,帮助开发者探索其语言生成能力。通过简单示例代码与自定义界面开发,展示了API的实际应用,让对接过程在一分钟内轻松完成,为项目开发带来更多可能。
|
7天前
|
数据采集 JSON API
Python 实战!利用 API 接口获取小红书笔记详情的完整攻略
小红书笔记详情API接口帮助商家和数据分析人员获取笔记的详细信息,如标题、内容、作者信息、点赞数等,支持市场趋势与用户反馈分析。接口通过HTTP GET/POST方式请求,需提供`note_id`和`access_token`参数,返回JSON格式数据。以下是Python示例代码,展示如何调用该接口获取数据。使用时请遵守平台规范与法律法规。
|
2月前
|
JSON API 数据格式
Python 请求微店商品详情数据 API 接口
微店开放平台允许开发者通过API获取商品详情数据。使用Python请求微店商品详情API的主要步骤包括:1. 注册并申请API权限,获得app_key和app_secret;2. 确定API接口地址与请求参数,如商品ID;3. 生成签名确保请求安全合法;4. 使用requests库发送HTTP请求获取数据;5. 处理返回的JSON格式响应数据。开发时需严格遵循微店API文档要求。
|
19天前
|
数据采集 API 数据格式
Python 原生爬虫教程:京东商品详情页面数据API
本文介绍京东商品详情API在电商领域的应用价值及功能。该API通过商品ID获取详细信息,如基本信息、价格、库存、描述和用户评价等,支持HTTP请求(GET/POST),返回JSON或XML格式数据。对于商家优化策略、开发者构建应用(如比价网站)以及消费者快速了解商品均有重要意义。研究此API有助于推动电商业务创新与发展。
|
2月前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。
下一篇
oss创建bucket