基于多目标粒子群求解含风、光、柴油机、储能的微电网多目标优化问题(Matlab实现)

简介: 基于多目标粒子群求解含风、光、柴油机、储能的微电网多目标优化问题(Matlab实现)

摘要:

本文使用一种经济与环保相协调的微电网优化调度模型,针对光伏电池、风机、微型燃气轮机、柴油发电机以及蓄电池组成的微电网系统的优化问题进行研究,在满足系统约束条件下,建立了包含运行成本、可中断负荷补偿成本以及污染物处理费用的微电网多目标优化调度模型,并利用多目标粒子群算法(MOPSO)求解微电网优化调度问题,代码注释详细,结构简洁,适合快速入门多目标粒子群和多目标微电网调度的同学。


1.微电网模型

本文讨论的微电网模型中包括:风力发电机、光伏太阳能板、柴油发电机、储能电池、电力负荷。使用MOPSO算法求解该微电网的多目标最优化调度问题。


2.微电网多目标优化调度的目标函数

由于是多目标优化调度,因此本文设置目标函数有两个:运行成本最小和风光消纳率最高。


2.1运行成本最小:


式中:T为微电网的调度周期的时段数;N为微电源类型数目;COi,t为微电源i在t时刻的发电费用;IRt为微电网在t时刻的可中断费用;Pi,t为第i台微电源在t时刻的发电功率。

2.2风光消纳率最高:

使用各个时刻预测的可再生能源最大可调度功率值与实际使用了的可再生能源功率值进行相减,再将全日的总可再生能源未消纳的量相加,即可构成可再生能源消纳目标函数

 

式中:PWT,tPPV,t表示t时刻的风电和光伏能发出的最大功率,PWT,t'PPV,t'表示实际使用了的风电和光伏功率。


3.微电网多目标优化调度的约束条件

3.1最大最小功率约束:

3.2最大最小功率约束:

3.3储能电池运行约束:

储能电池的SOC需要在运行一天后回到初始的位置,并且在运行的过程中不能超过最大和最小的储能元件容量约束。

4.多目标粒子群算法(MOPSO)

粒子群算法的原理在这里就不再赘述了,感兴趣的可以看我之前的文章,这里主要说一下多目标粒子群的不同之处。由于优化问题中含有多个目标函数,因此需要在求解过程中引入Pareto分层排序原则对个体进行选择,主要的步骤为:


(1)数据初始化。输入微电网的系统组成和结构参数、模型参数、MOPSO算法参数等


(2)将将粒子个体作为系统变量输入仿真模型,对违背约束的变量进行修正,并计算系统的运行成本、环境成本以及惩罚项作为个体适应度值。


(3)将个体适应度作为优化模型的输入,得到子代种群确定个体极值pbest。将pbest作为粒子的初始个体极值,如果当前的粒子支配pbest,则将当前的粒子作为pbest个体极值;如果两者不能比较,则计算两者在群体中支配其他粒子的个数,支配较多则作为个体极值pbest。


(4)对种群进行分层排序,将最优的非支配解Pareto存入外部存档集合,清除非Pareto解,并判断外部存档集合是否超过规定容量,若是,则按照拥挤距离选取m个粒子。


(5)全局最优值gbest。采用外部存档集合保存的Pareto最优解,本文引用轮盘赌方法根据最优解的拥挤距离从外部集合中选取gbest。


(6)重复计算(3-5)直到达到最大的迭代次数。


5.程序运行结果

6.代码展示

%% 程序初始化
clear;
clc;
close all;
%% 定义全局变量
global P_load; %电负荷
global WT;%风电
global PV;%光伏
global WT_price;%
global PV_price;
global BT_price;
%% 获取数据
data=xlsread('mopso_data');
P_load=data(:,1);
PV=data(:,2);
WT=data(:,3);
PV_price=0.8;
BT_price=0.5;
WT_price=0.6;
%储能最大放电功率
StorageMaxDischargingPower=250;
%储能最大充电功率
StorageMaxChargingPower=-200;
%柴油发电机最大功率
DGMaxImportPower=600;
%柴油发电机最小功率
DGMinImportPower=200;
%% 调用mopso函数
mm=mopso; %调用mopso函数
nn=length(mm.swarm); %非支配解数目
%将非支配解中的经济成本和消纳比例分别赋值给yyy,xxx
for i=1:nn
   yyy(i)= mm.swarm(1,i).cost(1);
   xxx(i)= mm.swarm(1,i).cost(2);
end
m1=max(yyy);
m2=max(xxx);


相关文章
|
11天前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
8天前
|
算法 定位技术 数据安全/隐私保护
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
|
19天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
1月前
|
算法 调度 云计算
云计算任务调度优化matlab仿真,对比蚁群优化和蛙跳优化
本程序针对云计算任务调度优化问题,旨在减少任务消耗时间、提升经济效益并降低设备功耗。通过对比蚁群优化算法(ACO)与蛙跳优化算法(SFLA),分别模拟蚂蚁信息素路径选择及青蛙跳跃行为,在MATLAB2022A环境下运行测试。核心代码实现任务分配方案的动态调整与目标函数优化,结合任务集合T与服务器集合S,综合考量处理时间与能耗等约束条件,最终输出优化结果。两种算法各具优势,为云计算任务调度提供有效解决方案。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
29天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
|
8月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
316 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
8月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
194 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
8月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
249 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章