【深度学习】基于 K-means 聚类算法的图像区域分割(Matlab代码实现)

简介: 【深度学习】基于 K-means 聚类算法的图像区域分割(Matlab代码实现)

💥1 概述

数据聚类是最基础和最重要的数据分析手段,实现对海量数据快速智能的聚类分析对于帮助整理、摘要和储存数据具有重要意义。在大数据和人工智能快速发展的背景下,传统聚类算法逐渐不能满足人们的实际需求,基于深度神经网络的聚类方法成为当前领域的热门研究方向。现有的深度聚类算法普遍存在目标函数易退化、泛化能力弱、训练不稳定和无监督神经网络表达性不足等问题。如何设计具有强表达性、泛化性、稳定性的深度聚类算法是人工智能中至关重要的研究问题。致力于克服现有深度聚类存在的研究难点,从目标函数设计、数据增强技术、自步学习算法、同变性特征和自监督表示学习等方面,研究如何提升深度聚类学习特征的质量,最终提高聚类性能。为了进一步解决深度聚类在背景复杂接近自然的图像数据上表现不佳的问题,提出基于图像平移的自监督表示学习算法。自监督学习方法通过预测施加在数据上的变换来为神经网络提供监督信息,实践证明用这种监督信息可以训练更加复杂的神经网络,以及在复杂数据集上学习具有判别性的特征。但现有的基于几何变换的自监督方法受变换产生的边缘效应的影响,性能还有待提升。为了解决该问题,我们设计了预测图像平移的像素个数的自监督任务,并通过对同一平移方向的图像施加相同的掩码来消除边缘效应对该任务的影响。实验证明提出的自监督方法能在复杂图像数据集上学习具有很强判别性的特征,为深度聚类提供了新的特征学习模型。 图像分割是图像分析和模式识别的首要问题,它在很大程度上决定着图像的最终质量分析和判别分析的结果,半监督聚类是目前机器学习和数据挖掘领域的一个研究热点,吸引了众多学者对该领域进行研究,并取得了一定的研究成果。本文对图像分割方法和半监督聚类方法进行了研究,提出了两种基于半监督聚类的图像分割算法,并通过实验对其分割效果进行了验证,一定程度上丰富了图像分割算法的研究内容,给图像分割问题的求解提供了新的思路,具有一定的科研价值和应用潜力。


📚2 运行结果

部分代码:

主函数
clc
close all
I=imread('football.jpg');
I=double(I)/255;
subplot(2,3,1)
imshow(I)
title('原始图像')
for i=2:6
    F=imkmeans(I,i);
    subplot(2,3,i);
    imshow(F,[]);
    title(['聚类个数=',num2str(i)])
end
其中部分子函数:
function [center]=searchcenter(X,kratio)
[n,~]=size(X);
isleft=true(n,1);
count=zeros(n,1);
center=[];
kind=0;
dist=0;
for i=1:n
    for j=i+1:n
        dist=dist+weightdist(X(i,:),X(j,:));
    end
end
dist=dist/((n-1)*(n-1)/2);
radius1=dist*kratio(1);
radius2=dist*kratio(2);
while any(isleft)
    for i=1:n
        count(i)=0;
        if isleft(i)       
            for j=1:n
                if isleft(j)
                    dist=weightdist(X(i,:),X(j,:));
                    count(i)=count(i) + dist<=radius1;
                end
            end
        end
    end
    [~,locs]=max(count);
    iscenter=true;
    for i=1:kind
        dist=weightdist(X(locs,:),center(i,:));
        iscenter=iscenter && dist>=radius2;
        if ~iscenter
            break;
        end
    end
    if iscenter
        kind=kind+1;
        center(end+1,:)=X(locs,:);
        for i=1:n
            if isleft(i)
                dist=weightdist(X(i,:),X(locs,:));
                if  dist <= radius1
                    isleft(i)=false;    
                end
            end        
        end        
    else
        isleft(locs)=false;
    end
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]郭西风. 基于深度神经网络的图像聚类算法研究[D].国防科技大学,2020.DOI:10.27052/d.cnki.gzjgu.2020.000056.

[2]谭静. 基于半监督聚类的图像分割算法研究[D].中国海洋大学,2012.

🌈4 Matlab代码实现

目录
打赏
0
0
0
0
78
分享
相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
477 55
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
265 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
98 18
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
262 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
129 31
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。