【最优潮流】基于分布式交变方向乘法器(ADMM)方法来求解带碳排放交易的直流动态最优潮流(Matlab代码实现)

简介: 【最优潮流】基于分布式交变方向乘法器(ADMM)方法来求解带碳排放交易的直流动态最优潮流(Matlab代码实现)

💥1 概述

文献来源:


摘要:本文提出了一种分布式交变方向乘法器(ADMM)方法来求解带碳排放交易的直流动态最优潮流问题(DC-DOPF-CET)。通常,基于adm的分布式方法公开了相邻子系统之间的边界总线和分支信息。与这些方法不同,本文提出的DC-ADMM-P方法采用了一种新颖的策略,即使用共识ADMM来解决DC-DOPF-CET的对偶问题,同时只公开相邻子系统之间的边界分支信息。此外,通过减少双乘法器数量和改进乘法器更新步骤,提高了DC-ADMM-P的收敛性能。DC-ADMM-P在6到1062总线的情况下进行了测试,并与其他分布式/分散方法进行了比较。仿真结果验证了DC-ADMM-P算法在求解具有复杂(非线性)因子的DC-DOPF问题时的有效性,这些复杂(非线性)因子可表示为凸可分函数。同时,通过减少双乘法器的数量和采用新的乘法器更新策略,提高了收敛性能。


📚2 运行结果

部分代码:

if isequal(includeCet,'yes')  %包含碳排放约束
        % -二次约束-start-%
        QCP.conQ = EconQ;
        QCP.conc = Econc;
        QCP.conb = Econb;
        %-二次约束-end-%
    end
    options = cplexoptimset;
    options.Display = 'off';
    if isequal(includeCet,'yes')  %包含碳排放约束
        [x,fval,exitflag,output] = cplexqcp(QCP.Q,QCP.c,QCP.Aineq,QCP.bineq,QCP.Aeq,QCP.beq,QCP.conc,QCP.conQ,QCP.conb,QCP.lb,QCP.ub,[],options);
        disp(output.cplexstatusstring);
    else %不考虑CET
        [x,fval,exitflag,output] = cplexqp(QCP.Q,QCP.c,QCP.Aineq,QCP.bineq,QCP.Aeq,QCP.beq,QCP.lb,QCP.ub,[],options);
        disp(output.cplexstatusstring);
    end
    if isequal(isRTS,'yes') %RTS数据存在一个节点上有多台机组的情况
        xx = sparse(PbusUnitsNumber(end,1)-PbusUnitsNumber(1,1),T);%P,行按照allNodes顺序排列
    else
        xx = sparse(N,T);%P
    end
    st = sparse(N,T);%θ
    pf = 0;%整个系统的排放
    pf_t = zeros(T,1);%排放量(按照时段划分)
    fd_t = zeros(T,1);%发电费用(按照时段划分)
    thpit = zeros(T,1);%机组出力(按照时段划分)
    eb = x(1);%买入碳排放deta_E_b
    es = x(2);%卖出碳排放deta_E_s
    if isequal(isRTS,'yes') %RTS数据存在一个节点上有多台机组的情况
        dr = []; %弹性负荷变量dr
        hr = []; %辅助变量Hr
        units_number = 1;
        for i = 1:size(allNodes,1)
            bus_sequence_index = find(ismember(SCUC_data.busUnits.bus_sequence,allNodes(i,1))==1); %allNodes(i,1)在SCUC_data.busUnits.bus_sequence上的索引
            P_start_index = (PbusUnitsNumber(i,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量P前面的所有变量P和θ的总数量
            Seta_start_index = (PbusUnitsNumber(i+1,1) - PbusUnitsNumber(1,1) + i - 1); %allNodes(i,1)对应变量θ前面的所有变量P和θ的总数量
            if ~isempty(bus_sequence_index) %节点上有发电机
                for j = 1:size(SCUC_data.busUnits.unitIndex{bus_sequence_index,1},1)
                    xx(units_number,:) = x(P_start_index*T + (j-1)*T + 2 + 1:P_start_index*T + (j-1)*T + 2 + T);%P
                    units_number = units_number + 1;
                end
            else %节点上没有发电机
                xx(units_number,:) = x(P_start_index*T + 2 + 1:P_start_index*T + 2 + T);%P
                units_number = units_number + 1;
            end
            st(i,:) = x(Seta_start_index*T + 2 + 1:Seta_start_index*T + 2 + T);%θ
        end
    elseif isequal(includeDR,'yes')
        dr = zeros(K,T); %弹性负荷变量dr
        hr = zeros(piecewiseNumber,T,K); %辅助变量Hr,第一个参数对应分段数,第二个参数对应时段,第三个参数对应节点编号
        %按照片区顺序
        for i = 1:n
            Pindex = 2*(PINumber{i}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T + 2; %+2为考虑碳排放的两个变量
            Dindex = 2*(PINumber{i+1}-1)*T + (EINumber{i}-1)*(piecewiseNumber+1)*T + 2; %+2为考虑碳排放的两个变量
            Hindex = Dindex + T; 
            %取P和θ
            for j = 1:PINumber{i+1}-PINumber{i}
                %xx的行按照partitionData.allNodes(即allNodes)中节点编号的顺序
                xx(PINumber{i}-1+j,:) = x(2*(j-1)*T+1+Pindex:2*(j-1)*T+T+Pindex,1);%P
                st(PINumber{i}-1+j,:) = x(2*(j-1)*T+T+1+Pindex:2*(j-1)*T+2*T+Pindex,1);%θ
            end
            %取dr和hr
            for k = 1:EINumber{i+1}-EINumber{i}
                %dr的行按照partitionData.allElasticityNodes中节点编号的顺序
                dr(EINumber{i}-1+k,:) = x((k-1)*(piecewiseNumber+1)*T+1+Dindex:(k-1)*(piecewiseNumber+1)*T+T+Dindex,1); %dr
                for r = 1:piecewiseNumber
                    hr(r,:,EINumber{i}-1+k) = x((k-1)*(piecewiseNumber+1)*T+(r-1)*T+1+Hindex:(k-1)*(piecewiseNumber+1)*T+(r-1)*T+T+Hindex,1); %hr
                end
            end
        end
    else
        dr = []; %弹性负荷变量dr
        hr = []; %辅助变量Hr
        for i = 1:N
            xx(i,:) = x((i-1)*2*T+2+1:(i-1)*2*T+2+T);%P
            st(i,:) = x((i-1)*2*T+2+T+1:(i-1)*2*T+2+2*T);%θ
        end
    end
    if isequal(isRTS,'yes') %RTS数据存在一个节点上有多台机组的情况
        %发电费用(按照时段划分)
        for t = 1:T
            units_number = 1;
            for i = 1:size(allNodes,1)
                bus_sequence_index = find(ismember(SCUC_data.busUnits.bus_sequence,allNodes(i,1))==1); %allNodes(i,1)在SCUC_data.busUnits.bus_sequence上的索引
                if ~isempty(bus_sequence_index) %节点上有发电机
                    for j = 1:size(SCUC_data.busUnits.unitIndex{bus_sequence_index,1},1)
                        units_index = SCUC_data.busUnits.unitIndex{bus_sequence_index,1}(j,1); %SCUC_data.busUnits.unitIndex{bus_sequence_index,1}在SCUC_data.units.bus_G上的索引
                        fd_t(t,1) = fd_t(t,1) + xx(units_number,t).^2 * SCUC_data.units.gamma(units_index) ...
                                + xx(units_number,t) * SCUC_data.units.beta(units_index) + SCUC_data.units.alpha(units_index);
                        units_number = units_number + 1;
                    end
                else
                    units_number = units_number + 1;
                end
            end
        end
    else
        if isequal(includeCet,'yes')  %包含碳排放约束
            %整个系统的排放量(所有时段)
            for i = 1:unitN
                index = find(allNodes == SCUC_data.units.bus_G(i)); %发电机节点的在矩阵中的索引
                for t = 1:T
                    pf = pf + xx(index,t).^2 * SCUC_data.units.c(i) + xx(index,t) * SCUC_data.units.b(i) + SCUC_data.units.a(i); 
                end
            end
            %排放量(按照时段划分)
            for t = 1:T
                for i = 1:unitN
                    index = find(allNodes == SCUC_data.units.bus_G(i)); %发电机节点的在矩阵中的索引
                    pf_t(t,1) = pf_t(t,1) + xx(index,t).^2 * SCUC_data.units.c(i) + xx(index,t) * SCUC_data.units.b(i) + SCUC_data.units.a(i);
                end
            end
        end
        %发电费用(按照时段划分)
        for t = 1:T
            for i = 1:unitN
                index = find(allNodes == SCUC_data.units.bus_G(i)); %发电机节点的在矩阵中的索引
                fd_t(t,1) = fd_t(t,1) + xx(index,t).^2 * SCUC_data.units.gamma(i) + xx(index,t) * SCUC_data.units.beta(i) + SCUC_data.units.alpha(i);
            end
        end
    end
    %所有时段的机组出力计划,比较发现,使用需求响应,确实能够削峰填谷
    thpit = full(sum(xx));  
    disp('总费用=');
    disp((fval+QCP.b)*SCUC_data.baseparameters.standardP);
    %返回值赋值--start-%   IEEE6:8.977148404647500e+04  ; IEEE30:2.136876446422936e+03  ;IEEE118:1.729592022969799e+06
    fval = (fval+QCP.b)*SCUC_data.baseparameters.standardP; 
    %返回值赋值--end-%
end


🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码实现

相关文章
|
机器学习/深度学习 传感器 算法
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
【红外图像】利用红外图像处理技术对不同制冷剂充装的制冷系统进行性能评估(Matlab代码实现)
|
机器学习/深度学习 传感器 算法
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
【视频去噪】基于全变异正则化最小二乘反卷积是最标准的图像处理、视频去噪研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 算法 新能源
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 存储 并行计算
【无人机】基于MPC的无人机路径规划研究(Matlab代码实现)
【无人机】基于MPC的无人机路径规划研究(Matlab代码实现)
124 6
|
18天前
|
机器学习/深度学习 边缘计算 人工智能
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
【无人机】采用NOMA的节能多无人机多接入边缘计算(Matlab代码实现)
|
18天前
|
机器学习/深度学习 传感器 运维
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
【电机轴承监测】基于matlab声神经网络电机轴承监测研究(Matlab代码实现)
|
18天前
|
数据采集 算法 调度
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)
【电力系统】基于matlab虚拟电厂内部负荷调度优化模型(matlab+yalmip+cplex)(Matlab代码实现)
|
18天前
|
传感器 并行计算 算法
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
|
18天前
|
存储 并行计算 算法
【图像压缩】在 MATLAB 中使用奇异值分解 (SVD) 进行图像压缩(Matlab代码实现)
【图像压缩】在 MATLAB 中使用奇异值分解 (SVD) 进行图像压缩(Matlab代码实现)
145 3
|
19天前
|
算法 Java 计算机视觉
【图像去模糊】非盲去模糊实景图像处理,使用点扩散函数(PSF)快速去除实景图像中的模糊(Matlab代码实现)
【图像去模糊】非盲去模糊实景图像处理,使用点扩散函数(PSF)快速去除实景图像中的模糊(Matlab代码实现)
120 2

热门文章

最新文章