【微电网】基于改进粒子群算法的微电网优化调度(Matlab代码实现)

本文涉及的产品
语种识别,语种识别 100万字符
图片翻译,图片翻译 100张
文档翻译,文档翻译 1千页
简介: 【微电网】基于改进粒子群算法的微电网优化调度(Matlab代码实现)

💥1 概述

文献来源:


摘要:当今全球普遍面临着能源危机和环境污染的加重,污染严重的化石能源将逐渐被无污染的清洁能源代替,随着经济的发展和社会的进步,以传统的发电方式已经不能满足当今电力用户对电能高可靠性、稳定性的要求需求。以风、光、储、微型燃气轮机、燃料电池等分布式电源构成的微电网能有效的解决了能源危机和环境污染问题。为了充分发挥清洁能源的效益,微电网系统在电力领域成为了研究热门。微电网中对各分布式微电源的优化调度是一个比较复杂的技术难题,且风能、太阳能发电的随机波动性对微电网本身也造成一定的安全稳定的影响,本文针对这些问题作了比较深入研究。在微电网中优化调度又是核心技术,调度策略的优劣将直接影响微电网运行的经济性、供电的可靠性,对微电网优化调度理论的研究有着重要的理论价值及工程价值,但现阶段对微电网的调度策略仍然不够完善,调度策略与运行模式、市场方案没有一体化。本文的研究内容对微电网优化调度做了些改进。本文建立了风、光、微型燃气轮机、燃料电池、储能装置组成的微电网优化调度模型。比较详细的介绍各单元的数学模型以及运行特性,提出了以综合效益最大化为总目标的目标函数,建立了微电网在不同运行方式具体的约束条件。制定了微电网在并网运行时、孤岛运行时分时段优化调度策略。当微电网并网运行时,起到削峰填谷的作用,孤岛运行时可以保证重要负荷用电的可靠性,从而使整个电网的发电设备得以充分利用。在微电网在并网运行和孤岛运行时分别采用不同的分时段优化调度策略,运用改进的粒子群算法对微电网中数学模型进行求解,确定各个微电源优化后的出力,以实现微电网系统运行的综合效益最大,并通过算例分析验证了本文算法的正确性及可行性。


关键词:微电网;分布式电源;综合效益;优化调度策略;粒子群算法;


1.1 风能发电的基本原理

风能属于可再生的清洁能源,有较好的发展前景。风能发电单元主要组成分有风机、变压器、发电机、电子开关接口以及齿轮箱。风能发电单元组成结构如图1.1所示。风能发电的基本原理6l是:风能发电机 ( Wind Turbine,WT)把风的动能经过风机旋转转化成机械能,然后风能发电机在风机带动下开始工作并将风机的机械能转化成磁能,再由磁能转化成电能。


                                             图1.1 风能发电系统的组成

根据风能发电的原理可知,风能发电单元的输出功率与风速大小有直接关系,其输出特性的波动性比较明显。

1.2 太阳能发的基本原理

太阳能电池发电是利用半导体材料的光生伏特效应,太阳辖射经太阳能电池直接将光能转换成电能的一种发电方式。太阳能发电不需要热力电动机,它能向负荷直接提供直流电能,提供交流电能时需要交直流变换器转换,它的运行方式有并网运行或孤岛运行。太阳能发电系统的组成主要由太阳能电池、控制器、变换器、蓄电池组和负载等组成。太阳能发电系统的结构组成如图1.2。



                                             图1.2 太阳能发电系统的基本原理

1.3 微型燃气轮机基本原理

微型燃气轮机(Microturbine,MT)是近年来新发展起来的一种小型热动装置,单机发电功率通常在几百千瓦以内(一般不超过300kW)。微型燃气轮机发电系统的主要组成部分有气体压缩机、发电机、回热器、燃烧室及电力电子设备。微燃气轮机系统结构组成如图1.3所示。

                                    图1.3 微型燃气轮机系统结构组成

1.4 燃料电池的基本原理

燃料电池作为一种能量转换装置,在运行过程中既发电又能产热,产生的热量可以提供给热力负荷使用,产生的电能能直接给直流设备使用也可经转换器生成交流电供交流负荷使用。燃料电池发电单元有四部分组成分别为燃料供给转换装置、空气供给装置、电池本体、热量回收装置。燃料电池发电单元的结构组成如图1.4所示。

                                         图1.4 燃料电池发电系统

1.5 储能装置的发电模型

在微电网中风能发电、太阳能发电等可再生能源容易受到风速、温度、光照的影响具有随机性和波动性,往往会造成电网电压和频率不稳定。会造成微电网发出的电量与用电负荷的不相等情况,也不能及时追随负载变化。储能装置可以提高整个微电网系统的安全性、灵活性和可靠性,克服了上述的难题,起到了削峰填谷的作用。由于储能装置反应速度很快,当微电网在发电高峰时,所发电能除满足负荷需求外仍有多余电能,储能装置能将多余电能储存;当微电网所发电能不能满足用电负荷需求时,储能装置可迅速提供其储存的电能提供给负荷,以保障微电网系统的供需平衡和电压稳定。


1.6 微电网并网运行调度策略

当微电网系统的工作模式处于并网方式运行时,微电网系统所发电量能达到负荷的用电最低要求时,使微电网的发电费用最低,除了考虑系统中各分布式单元的出力配合,还应当计及微电网系统与主网的能量交换和储能装置的工作状态。以往电网运行经验验表明用电负荷在一天内不同的时间段所消耗的用电量是有所差异的,分为用电高峰期、用电低估期、用电均衡期三个调度阶段。根据不同阶段的耗电量和此阶段内的电价制定微电网最佳的调度方案,在保证供电可靠性的前提下,使系统运行费用最节约。


1.7 孤岛调度策略

微电网孤岛运行方式是当主网系统的供电系统不稳定运行或发生事故时,微电网系统与主网系统断开,断开后微电网和主网之间的没有电能交易问题。这种模式下,微电网中所有的微电源出力来承担整个系统的负荷需求,最佳调度方案有;

(1)在负荷用电低谷阶段,微电网的调度方案与并网运行时相同,优先利用WT和PV发电向负荷提供电能,如果有多余的电量,则检测储能装置的荷电状态,决定是否给储能装置进行充电;如果WT和PV所发的电量达不到负荷的要求时,对比MT和FC的发电费用由MT和FC中发电费用较低的单元向用户提供电能,仍然不能满足是由BT放电提供。

(2)在用电平段阶段内,WT和PV发电不能满足负荷的用电需求,通过优化计算来确定MT和FC的出力。若所发电量能满足负荷需求仍有剩余电量,则根据储能装置的充放电状态给BT充电;若果微电网中WT和PV发出全部电能依然不能满足负荷用电需求时,则考虑利用BT放电来供负荷使用。


(3)在用电高峰期阶段内,微电网系统中负荷的用电需求达到高峰,WT和PV的发电量不能达到负荷需求时,通过优化计算来确定发电单元使用,原则是优先利用发电费用比较低的单元来满足负荷的用电需求;若微电网所发的全部电量达不到负荷的用电需求,则利用BT放电来满足供电,如果储能装置储存的电量全部释放还不能满足负荷需求的情况时,由负荷的重要程度由低到高切除,以达到微电网系统的功率供需平衡。


1.8 流程图

📚2 运行结果

2.1 算例分析

本文构建了包括风能发单元、太阳能发电单元、微燃气轮机单元、燃料电池以及蓄电池分布式电源等的微电网系统。根据用电负荷的实际用电情况将一天分为用电高峰期、用电低估期、用电均衡期三个阶段。由于风速、温度、光照强度在一天内是逐渐变化的,所以其发电单元的出力也是不确定的,以一个小时为单位来划分微电网系统的优化调度时间,可以将一天设为24调度时段,而将一天作为微电网的一个调度周期,进行调度分布式单元的出力更加合理。以满足微电网系统运行的约束为前提,以优化调度策略为原则,微电网的微电网运行综合效益最大化为目标函数,用改进粒子群优化算法对微电网的目标函数进行求解。分别对微电网并网运行和孤岛运行进行仿真,仿真时以某典型日提供的参数作为依据进行仿真,并在并网运行时和孤岛运行时的调度策略下确定微电网中各分布式电源的最优出力,使整个优化调度周期运行最小成本费用,进而实现微电网系统的最优化运行。

2.2 运行结果



🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]姚景昆. 基于改进粒子群算法的微电网优化调度[D].辽宁工业大学,2016.

🌈4 Matlab代码及详细文章讲解

链接:https://pan.baidu.com/s/1ZWCHuxXL0usYxLESRJwL5g 

提取码:73su

--来自百度网盘超级会员V3的分享

相关文章
|
11天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
11天前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
115 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
1月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
79 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
2月前
|
算法 数据可视化 调度
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
|
2月前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
3月前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
950 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
5月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
6月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
134 1
|
6月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
147 2