OpenAI再建顶级团队,重金招聘核心岗成员,阻止超级AI的威胁!

简介: OpenAI再建顶级团队,重金招聘核心岗成员,阻止超级AI的威胁!

“AI确实可能会杀死人类。”这并不是哪家自媒体为博人眼球而发表的谣言,而是ChatGPT之父、OpenAI CEO山姆·奥尔特曼在今年3月与MIT研究科学家Lex Fridman对话时亲口所说的一句话。


如今,这位全世界最受瞩目的老板决定采取行动,以阻止自己的预言发生——OpenAI通过7月5日发表于官网的博客表示,公司正在组建一个顶级AI团队,计划于四年内解决超级AI的核心技术挑战并实现对超级AI的完全掌控。


更值得一提的是,为了能更好的完成对新团队的构建,OpenAI本次甚至开启了团队核心岗位的对外招聘通道。目前所公布的三个职位,年薪范围在24.5至50万美元不等。

f47797391cc456c593e7008a454d629a.png

1、我们创造了过于强大的黑盒



根据OpenAI的说法,超级智能将会是人类有史以来所发明的最具影响力的技术,将能够帮助人类解决世界上许多最重要的问题。但不可忽视的是,超级智能的巨大力量也同样危险,可能导致人类丧失许多核心技能,甚至彻底灭绝人类。


虽然就目前而言,即便是最先进的大模型GPT4与超级智能依然相差甚远,但OpenAI认为超级智能的到来只需要十年甚至更短。并且如今人类在AI方面的技术积累,就连GPT4的推理能力都无法解读,更不要说在未来控制比人类聪明太多的超级智能。


想要管理超级智能可能带来的风险,就需要建立相应的治理组织,来解决超级智能AI对齐的问题。然而遗憾的是,我们至今仍然没有解决方案能够操纵或控制潜在的超级智能,以防止将来可能发生的危险。


现阶段最有效的对齐人工智能的技术之一,正是GPT4中所使用的基于人类反馈的强化学习(RLHF),但依靠这种基于人类监督的AI能力,我们无法可靠地监督比我们聪明太多的人工智能系统。因此目前的对齐技术无法有效覆盖超级智能,这使得我们急需寻找新的科技突破。

image.png


2、OpenAI的三步计划



对于超级智能的潜在风险,OpenAI也给出了目前他们认为切实可行的解决方案,那就是建立一个人类水平的“自动对齐研究系统”,这样人类便能够依靠大量算力扩展研究工作,以实现对超级智能的控制和调整。


而创建这个自动对齐研究系统,则大致需要分为三步,包括开发可扩展的训练方法;验证生成模型结果,以及对整个对齐管道进行压力测试。


  1. 为了在人类难以评估的任务上提供训练信号,OpenAI决定利用人工智能系统协助评估其他人工智能系统。此外,他们希望能够了解并控制AI模型是如何将监督推广到人类研究员无法监督的任务上。
  2. 在验证自动对齐系统的一致性方面,可以搜索有问题的模型行为和出现问题的模型的内部结构。
  3. 最后,在完成上述的工作后,可以通过训练未对齐的模型来测试对齐系统的整个管道,并确认系统最终监测到的其余模型的未对齐行为,也就是我们熟知的对抗测试。


OpenAI表示,随着人们对AI模型不可控行为了解的深入,人类对于AI模型的研究重点可能将会发生实质性的变化,甚至有可能会演变出全新的AI研究领域。而在未来,公司也将随着研究的深入公开更多的研究路线及研究成果。


3、联合创始人带队的顶级天团



为了能够更好的构建这个自动对齐系统,OpenAI决定组建一个全新的顶级人工智能专家团队。团队将由OpenAI联合创始人兼首席科学家Ilya Sutskever以及OpenAI对齐团队负责人Jan Leike共同领导。


OpenAI联合创始人兼首席科学家Ilya Sutskeve

c3cc2ee1116d318a372216d5b9450b08.png

团队目前的其余成员,则包括此前在公司内部负责AI对齐的研究人员和工程师,以及来自其他研发团队的AI专家。并且在接下来的四年里,OpenAI决定将公司此后所获得算力的20%分配给该团队,用以完成新系统的训练。


这将会是一项关乎未来的赌注,而OpenAI最具价值的筹码便是这个正在组建的超级团队。公开博客中也提到,正确完成这项任务对实现OpenAI的使命至关重要,希望新团队包括其他内外部组织都能为之作出贡献,并最终将可靠的新方法推广部署到更多领域之中。


4、核心岗位重金招聘



而这篇博客中的另一个重点,则是OpenAI正在开展新团队核心岗位的对外招聘。博客中提到:“为了解决这个时代最重要的技术问题,我们需要世界上最优秀人才的帮助。如果你已经在机器学习领域取得了成功,这将是你为世界作出巨大贡献的机会。”


目前所公开的三个核心岗位包括研究工程师(research engineer)、研究科学家(research scientist)以及研究经理(research manager):


研究工程师:年薪范畴24.5至45万美元。职责主要为机器学习训练代码的编写;进行机器学习实验及分析,以及与团队合作规划未来实验。细节方面则包括探索可扩展监督技术;研究管理数据集和模型奖励信号;预测模型行为以及设计对齐研究方法。


研究科学家:年薪范畴同样为24.5至45万美元。岗位职责主要为开发创新的机器学习技术,并为公司的研究愿景作出贡献。工作包括对齐研究实验的设计、研究方法总结;管理数据集,以及探索模型行为和设计新的实验方法。


研究经理:年薪范畴42至50万美元。主要负责管理由科学家和工程师组成的团队,整合大模型和超级智能研究成果。该角色需要能够规划和执行研究项目,指导团队成员,以及培养团队的多元化和包容性文化。


5、终极目标:四年内解决一切



但话说回来,尽管目前新团队的阵容已然非常强大,OpenAI也在不惜重金招贤纳士,但想要完成这项任务的难度也同样可想而知,就连山姆·奥尔特曼自己也坦言不敢保证最终能取得成功。


然而值得高兴的一点是,目前该团队的许多想法在初步实验中已经取得了一定成果,AI对齐的衡量标准也在一次次实验中变得愈加完善,甚至如今一些创新性方法已经被运用到了解决GPT4幻觉的实验之中。


对于团队的终极目标,OpenAI表示计划利用四年时间完成自动对齐系统的构建,并彻底理解和减轻现有AI大模型以及未来可能出现的超级智能的所有技术风险,包括AI滥用、经济破坏、虚假信息、偏见与歧视,以及人类对AI的过度依赖。


除此之外,OpenAI还提到在未来的研究过程中,除了在技术方面的探索外,新团队也将积极与外部的跨学科专家及组织进行合作,以确保将技术价值发挥到最大,尽可能解决AI除技术风险之外可能造成的广泛的人类及社会领域问题。

image.png


6、这个时代最重要的课题



归根结底,无论是目前OpenAI对超级智能的担忧,还是近来广被用户诟病的大模型幻觉问题,落到实处所表现出的其实都是现有技术在AI监管和治理能力上的不足,而这也是当前时代人类最亟待解决的一个课题。


随着ChatGPT将我们带入AI2.0时代,人工智能所能创造的价值也被抬升到了一个全新的高度。然而伴随着技术及应用的不断下沉,AI所带来的造假、幻觉、滥用等问题也在极大程度上暴露出了这项技术“双刃剑”的属性。


无论是现在还是将来,人工智能战略的终极追求除了AGI以外,更重要的一点正是完全的可解释性。正如一位网友在Twitter上所说,如果有一天我们真的创造出了一个过于强大的黑盒,那将给人类带来极大麻烦。


除此之外,解决AI系统的黑盒问题,也将成为未来科技巨头们竞争的核心战场。毕竟谁能够率先完成这项壮举,谁就有机会彻底占据现有市场,并将自己的AI产品及业务扩张到更多对手无法企及的蓝海领域。


当然,无论出于何种目的考虑,如今的OpenAI已经在这条道路上再次迈出了坚实的一步。与此同时,也让我们期待未来能够有更多具备强劲实力的企业加入这场意义重大的远征。


相关拓展:


看到ChatGPT带来的生产力,我想到了低代码平台。

低代码是什么?一组数字技术工具平台,能基于图形化拖拽、参数化配置等更为高效的方式,实现快速构建、数据编排、连接生态、中台服务等。通过少量代码或不用代码实现数字化转型中的场景应用创新。它能缓解甚至解决庞大的市场需求与传统的开发生产力引发的供需关系矛盾问题,是数字化转型过程中降本增效趋势下的产物。


这边介绍一款好用的低代码平台——JNPF快速开发平台。近年在市场表现和产品竞争力方面表现较为突出,的是最新主流前后分离框架(SpringBoot+Mybatis-plus+Ant-Design+Vue3。代码生成器依赖性低,灵活的扩展能力,可灵活实现二次开发。


以JNPF为代表的企业级低代码平台为了支撑更高技术要求的应用开发,从数据库建模、Web API构建到页面设计,与传统软件开发几乎没有差异,只是通过低代码可视化模式,减少了构建“增删改查”功能的重复劳动,还没有了解过低代码的伙伴可以尝试了解一下。应用:JNPF开发平台


有了它,开发人员在开发过程中就可以轻松上手,充分利用传统开发模式下积累的经验。所以低代码平台对于程序员来说,有着很大帮助。


最后,如果你对于OpenAI新团队的招聘信息与岗位待遇感兴趣 ,可以从以下链接了解详情:https://openai.com/careers/search


参考链接:


https://openai.com/blog/introducing-superalignment#JanLeike


https://analyticsindiamag.com/openai-aims-to-achieve-superintelligence-before-2030/


相关文章
|
2月前
|
人工智能 安全 搜索推荐
北大计算机学院再登国际AI顶刊!张铭教授团队揭露医疗AI致命漏洞
【10月更文挑战第17天】北京大学计算机学院张铭教授团队在国际顶级人工智能期刊上发表重要成果,揭示了医疗AI系统中的致命漏洞——“模型反演”。该漏洞可能导致误诊和医疗事故,引起学术界和工业界的广泛关注。研究强调了医疗AI系统安全性评估的重要性。
46 1
|
8天前
|
人工智能 数据可视化 JavaScript
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
NodeTool 是一个开源的 AI 工作流可视化构建器,通过拖放节点的方式设计复杂的工作流,无需编码即可快速原型设计和测试。它支持本地 GPU 运行 AI 模型,并与 Hugging Face、OpenAI 等平台集成,提供模型访问能力。
62 14
NodeTool:AI 工作流可视化构建器,通过拖放节点设计复杂的工作流,集成 OpenAI 等多个平台
|
16天前
|
人工智能 编解码 机器人
OpenAI又出王炸了!正式推出超强AI视频模型Sora
OpenAI正式推出AI视频生成模型Sora,可根据文本提示生成逼真视频,面向美国及其他市场ChatGPT付费用户开放。Sora Turbo支持生成长达20秒的视频及多种变体,具备模拟物理世界的新兴能力,可创建多镜头视频,提供Remix和Storyboard等创新功能。
43 4
OpenAI又出王炸了!正式推出超强AI视频模型Sora
|
3天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
33 13
|
5天前
|
人工智能 自然语言处理 前端开发
openai 12天发布会收官 | AI大咖说
OpenAI这12天的发布会,并没有太多特别令人惊喜的内容,可能是前面的惊喜太多了。更多的是,让ChatGPT越来越侧重参与现实中的应用,真正赋能改变生活,包括projects项目管理,canvas文档写作,接入电话,接入ios,接入桌面,接入搜索,以及chatGPT桌面和更多应用的交互。 以及更多的多模态的延展,视觉vision,语音,视频sora。 在最后收官中,宣布新一代的O3和O3-mini更强的推理模型
83 11
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
MetaGPT开源SELA,用AI设计AI,效果超越OpenAI使用的AIDE
MetaGPT团队开源了Tree-Search Enhanced LLM Agents(SELA)系统,通过蒙特卡罗树搜索(MCTS)优化AutoML过程,显著提升了机器学习模型的构建效率和性能。SELA在20个数据集上的实验结果表明,其性能优于传统AutoML方法和基于LLM的代理,为AutoML领域带来了新的突破。
31 4
|
12天前
|
人工智能 自然语言处理 前端开发
OpenAI 12天发布会全解析 | AI大咖说
OpenAI近日宣布将在12个工作日内每天进行一场直播,展示一系列新产品和样品。首日推出GPT-o1正式版,性能大幅提升;次日展示Reinforcement Fine-Tuning技术,提高模型决策质量;第三天推出Sora,实现高质量视频生成;第四天加强Canvas,提升多模态创作效率;第五天发布ChatGPT扩展功能,增强灵活性;第六天推出ChatGPT Vision,实现多模态互动;第七天推出ChatGPT Projects,优化项目管理。这些新技术正改变我们的生活和工作方式。
763 9
|
20天前
|
人工智能
带上团队一起来做 AI 编程实践丨通义灵码联合TGO鲲鹏会开启 AI 大课
带上团队一起来做 AI 编程实践丨通义灵码联合TGO鲲鹏会开启 AI 大课
|
22天前
|
人工智能 自然语言处理 数据挖掘
田渊栋团队新作祭出Agent-as-a-Judge!AI智能体自我审判,成本暴跌97%
田渊栋团队提出Agent-as-a-Judge框架,利用智能体自身评估其他智能体的性能,不仅关注最终结果,还能提供中间反馈,更全面准确地反映智能体的真实能力。该框架在DevAI基准测试中表现出色,成本效益显著,为智能体的自我改进提供了有力支持。
37 7
|
1月前
|
SQL 机器学习/深度学习 人工智能
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!
本文介绍了四个最新的 AI 开源项目,涵盖多模态生成式 AI、自然语言到 SQL 转化、多模态数学推理和复杂逻辑推理等多个领域,为 AI 应用开发提供了丰富的资源和工具。
127 0
今日 AI 开源|共 4 项|DeepSeek 推出新一代 AI 推理模型,实力比肩 OpenAI o1-preview!

热门文章

最新文章