基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)

简介: 基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)

💥1 概述

参考文献:

摘要:可再生能源(RES)和储能系统(ESS)在微电网中的集成为最终用户和系统运营商提供了潜在的利益。然而,对于微电网的经济运行,需要对可再生能源的间歇性问题和ESS的高成本进行审查。本文提出了一种由电池和超级电容器组成的混合ESS微电网的两层预测能量管理系统(EMS)。考虑到混合ESS在充电深度(DOD)和寿命方面的退化成本,电池和超级电容器的长期成本被建模并转化为与实时操作相关的短期成本。为了在最小运营成本下保持高系统鲁棒性,提出了一种分层调度模型,以在有限时间范围内确定微电网中公用设施的调度,其中上层EMS最小化总运营成本,下层EMS消除预测误差引起的波动。仿真研究表明,不同类型的能量存储可以在两个控制层用于多个决策目标。包含不同定价方案、预测范围长度和预测精度的场景也证明了所提出的EMS结构的有效性。


📚2 运行结果


部分代码:

%% Start iteration: second layer
    snd.mpciter = 0; %iteration Index
    snd.option = options;
    while (snd.mpciter < snd.iter)
        % data changed in every 5 min
        snd.PV = pv_5m_data_all(snd.mpciter+1+12*fst.mpciter, 1:12)';
        snd.wind = wind_5m_data_all(snd.mpciter+1+12*fst.mpciter, 1:12)';
        % data not changed in every 5 min
        snd.load = snd.load_all(snd.mpciter+1:snd.mpciter+snd.horizon,:);
        snd.price = snd.price_all(snd.mpciter+1:snd.mpciter+snd.horizon,:);
        %%
        %SECOND mpc calculation
        [snd.f_dyn, snd.x_dyn, snd.u_dyn] = snd_mpc( snd, snd_output_data );
        %Next iteration:
        snd.u0 = shiftHorizon(snd.u_dyn); %Estimated control variables
        snd.xmeasure = snd.x_dyn(2,:);
        snd.mpciter = snd.mpciter+1;
        snd.x = [ snd.x; snd.x_dyn(1,:) ];
        snd.u = [ snd.u; snd.u_dyn(:,1)' ];
    end
    snd.flag = 1; %
    %Second layer ends
    %FIRST: Next iteration
    fst.u0 = shiftHorizon(fst.u_dyn); %Estimated control variables
    fst.xmeasure = snd.xmeasure(1,1:2); % From the second layer if second layer EXISTS
    %   fst.xmeasure = fst.x_dyn(2,:); %Estimated state variables, if second layer does not exist
    fst.mpciter = fst.mpciter+1;

🌈3 Matlab代码实现

回复关键字

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]C. Ju, P. Wang, L. Goel and Y. Xu, "A Two-Layer Energy Management System for Microgrids With Hybrid Energy Storage Considering Degradation Costs," in IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6047-6057, Nov. 2018, doi: 10.1109/TSG.2017.2703126.

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
72 3
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-16
47 1
|
3月前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-15
76 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-14
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-14
59 1
|
3月前
|
存储 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
53 0
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-17
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-17
74 0
|
3月前
|
存储 机器学习/深度学习 人工智能
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-13(下)
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-13(下)
64 0
|
12天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
6天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
8天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。