计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18

简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18

1. On the Reliability of Large Language Models to Misinformed and Demographically-Informed Prompts

Authors: Toluwani Aremu, Oluwakemi Akinwehinmi, Chukwuemeka Nwagu, Syed

Ishtiaque Ahmed, Rita Orji, Pedro Arnau Del Amo, Abdulmotaleb El Saddik

https://arxiv.org/abs/2410.10850

大型语言模型对错误信息和人口统计学信息提示的可靠性研究

摘要:

本文研究了基于大型语言模型(LLM)的聊天机器人在处理错误信息提示和包含人口统计学信息的问题时的行为和表现。研究聚焦于气候变化和心理健康领域,通过定量和定性方法评估聊天机器人辨别陈述真实性、坚持事实以及其回应中存在的偏见或错误信息的能力。定量分析显示,聊天机器人在回答封闭式问题时能够给出正确答案,但定性分析揭示了隐私、伦理问题以及聊天机器人在将用户引导至专业服务方面仍存在担忧。

研究背景:

随着大型语言模型(LLMs)的广泛应用,其在语言理解和生成方面的能力显著提升。然而,LLMs在处理敏感领域信息时,如气候变化和心理健康,其输出的准确性和可靠性成为关键问题。

算法模型:

研究主要分析了三个基于LLM的聊天机器人:ChatGPT、Bing Chat和Google BARD。通过构建基准数据集,包含气候变化和心理健康领域的真假问题,以及与领域专家的合作,对聊天机器人的回应进行了评估。

核心创新点:

  • 提出了一个综合基准数据集,用于评估LLM支持的聊天机器人。
  • 与领域专家合作,对聊天机器人的回应进行了深入的定性分析。
  • 提出了针对LLM支持的聊天机器人在提供气候变化和心理健康信息时的挑战和策略。

实验效果:

实验结果显示,聊天机器人在回答气候变化和心理健康领域的封闭式问题时表现出较高的准确性。然而,定性分析揭示了隐私、伦理问题以及在引导用户至专业服务方面的担忧。

后续潜在研究方向:

未来的研究可以进一步探索如何提高LLM在处理敏感领域信息时的准确性和可靠性,以及如何更好地整合领域专家的知识以提升聊天机器人的性能。

推荐阅读指数: ★★★★☆

2. SafeLLM: Domain-Specific Safety Monitoring for Large Language Models: A Case Study of Offshore Wind Maintenance

Authors: Connor Walker, Callum Rothon, Koorosh Aslansefat, Yiannis

Papadopoulos, Nina Dethlefs

https://arxiv.org/abs/2410.10852

SAFELLM: 针对大型语言模型的特定领域安全监控:海上风电维护案例研究

摘要:

随着海上风电(OSW)行业的显著扩张,运营和维护(O&M)成本增加。智能报警系统提供了快速检测组件故障和流程异常的前景,使得能够及时准确地进行干预,从而可能减少资源支出和计划内及计划外的停机时间。本文介绍了一种创新方法,利用大型语言模型(LLMs)来解决这一挑战。我们提出了一个专门的对话代理,该代理结合了统计技术来计算句子之间的距离,以检测和过滤幻觉和不安全的输出。这可能使得代理能够更好地解释报警序列,并生成更安全的维修行动建议。初步发现是将这种方法应用于ChatGPT-4生成的测试句子。

研究背景:

海上风电行业的快速增长带来了对运营和维护的更高要求,尤其是在远程监控和诊断方面。LLMs在这一领域的应用需要可靠性和可信任性作为前提,但关于幻觉和不安全回应的担忧仍然存在。

算法模型:

研究提出了一个名为SafeLLM的框架,该框架利用统计方法计算句子之间的距离,以检测和过滤幻觉和不安全的输出。该框架应用于ChatGPT-4生成的测试句子,并讨论了使用ChatGPT-4的局限性以及通过使用专门的OSW数据集重新训练以增强代理的潜力。

核心创新点:

  • 提出了一个结合统计技术的对话代理,用于检测和过滤LLM生成的不安全输出。
  • 使用Wasserstein距离(EMD)作为句子相似性的度量,以提高对幻觉和不安全输出的检测能力。

实验效果:

实验结果表明,使用Wasserstein距离的方法在大多数类别中与余弦相似度相比具有可比的准确性,显示出作为SafeLLM框架基础的潜力。

后续潜在研究方向:

未来的工作可以集中在与行业合作,获取更全面的数据集来训练和测试模型,以及开发更具体的不安全概念字典,以符合当前的行业标准。

推荐阅读指数: ★★★★☆

3. Mitigating Hallucinations Using Ensemble of Knowledge Graph and Vector Store in Large Language Models to Enhance Mental Health Support

Authors: Abdul Muqtadir, Hafiz Syed Muhammad Bilal, Ayesha Yousaf, Hafiz Farooq

Ahmed, Jamil Hussain

https://arxiv.org/abs/2410.10853

使用知识图谱和向量存储的集成来减轻大型语言模型中的幻觉,以增强心理健康支持

摘要:

这项研究工作深入探讨了大型语言模型(LLMs)中的幻觉表现及其对心理健康领域应用的影响。主要目标是识别有效的策略来减少幻觉事件,从而增强LLMs在促进心理健康干预措施(如治疗、咨询和传播相关信息)中的可靠性和安全性。通过严格的调查和分析,本研究旨在阐明LLMs中幻觉的潜在机制,并随后提出针对性的干预措施来减轻其发生。通过解决这一关键问题,研究努力促进LLMs在心理健康背景下的更强大的框架,确保它们在帮助治疗过程和向寻求心理健康支持的个人提供准确信息方面的有效性和可靠性。

研究背景:

心理健康问题在数字化连接的世界中日益受到关注。然而,传统的心理健康服务通常与可访问性、负担能力和污名化相关。此外,与顾问的面对面会议在时间和空间上都是有限的。因此,许多人拒绝寻求这些问题的帮助,使他们的心理健康处于风险之中。随着对心理健康支持的需求持续增加,迫切需要新的发展来满足这一需求。

算法模型:

研究使用了开源的大型语言模型,如Google Gemma、Mistral和Zypher,用于基于心理健康领域的问题生成答案。通过结合向量存储检索和知识图谱存储检索的优势,提出了一种集成检索器框架,以减少LLM中的幻觉。

核心创新点:

  • 提出了一种集成检索器框架,结合了向量存储检索和知识图谱存储检索,以减少LLM中的幻觉。
  • 使用了GENA(Graph for Enhanced Neuropsychiatric Analysis)知识图谱,提供了关于心理健康的权威信息,包括症状、治疗、疾病和遗传标记。

实验效果:

实验结果表明,集成检索器系统在准确性和相关性方面比基线LLM系统有显著提高。通过知识图谱数据显著降低了错误信息的比率,并增强了上下文理解。

后续潜在研究方向:

未来的研究可以集中在改进系统的可扩展性和适应性,以适应更广泛的应用和领域,解决计算成本较高和反应时间较长的问题。

推荐阅读指数: ★★★★☆

4. CogDevelop2K: Reversed Cognitive Development in Multimodal Large Language Models

Authors: Yijiang Li, Qingying Gao, Haoran Sun, Haiyun Lyu, Dezhi Luo, Hokin Deng

https://arxiv.org/abs/2410.10855

COGDEVELOP2K: 多模态大型语言模型中的认知发展逆转

摘要:

多模态大型语言模型(MLLMs)是否只是随机的鹦鹉?它们是否真的理解和能够执行它们擅长的任务?本文旨在探讨MLLMs的基础,即人类智能建立的感知、理解和推理的核心认知能力。为此,我们提出了CogDevelop2K,这是一个涵盖12个子概念的综合基准,从物体永久性、边界等基础知识到意向性理解等高级推理,通过人类思维的发展轨迹进行结构化。我们在这些基准上评估了46个MLLM。总体上,我们进一步评估了评估策略和提示技术的影响。令人惊讶的是,我们观察到与人类相比,模型显示出相反的认知发展轨迹。

研究背景:

在先进的大型语言模型(LLMs)的基础上,多模态大型语言模型(MLLMs)最近在涉及高级推理、感知和认知的复杂任务中表现出人类水平的性能。然而,我们提出了一个关键问题:MLLMs是否真的理解这些任务并具备执行它们的真正能力,还是它们只是依赖于学习偶然相关的“随机鹦鹉”?

算法模型:

研究提出了CogDevelop2K,这是第一个视觉认知发展基准,包含总共2519个问题,其中包含2517张图片和455个视频。然后,在跨越所有四个认知发展阶段的基准上评估了46个MLLM模型。

核心创新点:

  • 提出了CogDevelop2K基准,涵盖12个子概念,从物体永久性、边界等基础知识到意向性理解等高级推理。
  • 引入了一种新的多帧问题格式,同时评估模型的共指、认知推理和时间理解能力。

实验效果:

实验结果表明,与人类相比,模型显示出相反的认知发展轨迹。例如,GPT系列在形式操作阶段表现更好,而在具体操作阶段表现更差。

后续潜在研究方向:

未来的研究可以进一步探讨MLLMs的认知基础,以及评估策略和提示技术对它们结果的影响。

推荐阅读指数: ★★★★☆

5. Mirror-Consistency: Harnessing Inconsistency in Majority Voting

Authors: Siyuan Huang, Zhiyuan Ma, Jintao Du, Changhua Meng, Weiqiang Wang,

Zhouhan Lin

https://arxiv.org/abs/2410.10857

Mirror-Consistency: 在多数投票中利用不一致性

摘要:

自一致性是一种广泛使用的解码策略,显著提升了大型语言模型(LLMs)的推理能力。然而,它依赖于多数投票规则,这种规则只关注最频繁的回答,而忽视了所有其他少数回应。这些不一致的少数观点往往揭示了模型生成过程中的不确定性。为了解决这一局限性,我们提出了Mirror-Consistency,这是标准自一致性方法的增强。我们的方法将“反射镜”纳入自集成解码过程,使LLM能够批判性地检查多个生成之间的不一致性。此外,就像人类使用镜子更好地了解自己一样,我们提议使用Mirror-Consistency来增强基于样本的置信度校准方法,这有助于减轻过度自信的问题。我们的实验结果表明,与自一致性相比,Mirror-Consistency在推理准确性和置信度校准方面都取得了更好的性能。

研究背景:

大型语言模型(LLMs)在各个领域都有先进的应用,显著影响了多个领域。为了进一步增强LLMs的推理能力,自一致性最初生成了广泛的推理路径,然后进行边缘化以确定最一致的回应。尽管通常有效,但这种方法主要依赖于多数投票规则,这只关注最频繁的回答,从而忽视了其他少数回应。因此,重新采样答案中的关键不一致性,这些不一致性可能揭示了LLMs的不确定性和潜在错误,往往没有得到应有的关注。

算法模型:

研究提出了Mirror-Consistency方法,通过在自集成解码过程中加入“反射镜”,使LLM能够批判性地检查多个生成之间的不一致性。此外,该方法还用于增强基于样本的置信度校准方法,以减轻过度自信的问题。

核心创新点:

  • 提出了Mirror-Consistency方法,通过在自集成解码过程中加入“反射镜”,使LLM能够批判性地检查多个生成之间的不一致性。
  • 使用Mirror-Consistency来增强基于样本的置信度校准方法,以减轻过度自信的问题。

实验效果:

实验结果表明,与自一致性相比,Mirror-Consistency在推理准确性和置信度校准方面都取得了更好的性能。

后续潜在研究方向:

未来的研究可以进一步探索不同的提示策略与Mirror-Consistency方法的相互作用,以及在不同设置下Mirror-Consistency的鲁棒性。

推荐阅读指数: ★★★★☆


后记

如果您对我的博客内容感兴趣,欢迎三连击(点赞、收藏、关注和评论),我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

目录
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
115 55
|
24天前
|
人工智能 并行计算 算法
量子计算算法:超越经典计算机的边界
量子计算基于量子力学原理,利用量子位、量子叠加和量子纠缠等特性,实现并行计算和高效处理复杂问题。核心算法如Shor算法和Grover算法展示了量子计算在大数分解和搜索问题上的优势。尽管面临量子位稳定性和规模化等挑战,量子计算在化学模拟、优化问题和人工智能等领域展现出巨大潜力,预示着未来的广泛应用前景。
|
22天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
83 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
84 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
22天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
2月前
|
机器学习/深度学习 人工智能 算法
量子计算算法:超越经典计算机的边界
【10月更文挑战第30天】量子计算基于量子力学原理,通过量子比特和量子门实现超越经典计算机的计算能力。本文探讨量子计算的基本原理、核心算法及其在密码学、化学、优化问题和机器学习等领域的应用前景,并讨论当前面临的挑战与未来发展方向。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
61 3
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
31 0
下一篇
DataWorks