基于轨迹优化的自动驾驶汽车跟随自行车模型动力学控制(Matlab代码实现)

简介: 基于轨迹优化的自动驾驶汽车跟随自行车模型动力学控制(Matlab代码实现)

💥1 概述

本次使用轨迹优化技术来控制汽车。假设汽车遵循自行车模型的动力学。为了实现稳定和安全的跟踪,我们使用了离散时间模型预测控制。

一个离散的比例控制器(基于定义为偏离赛道中心线的函数的误差)用于生成我们的赛车将遵循的近似轨迹。


复制或下载此存储库后,在系统上打开MATLAB并运行main.m。

📚2 运行结果

🎉3 参考文献

[1]李晓芳,何俊.智能自动驾驶汽车的轨迹优化[J].价值工程,2017,36(21):129-130.DOI:10.14018/j.cnki.cn13-1085/n.2017.21.055.

👨‍💻4 Matlab代码

主函数部分代码:


clear 
close all
clc
trackDataFileName = 'TestTrack';
%% Proportional Control
initialState = [287,5,-176,0,2,0];
initialTrajectoryFileName = initialTrajectoryGenerator(trackDataFileName,initialState);
disp('Initial Trajectory Generated');
%% MPC
% differentInitialState = initialState;         % to keep the same initial state
differentInitialState = [284,5,-180,0,2,0];     % to provide a different initial state
finalTrajectoryFileName = discreteMPC(initialTrajectoryFileName,differentInitialState);
disp('MPC Trajectory Generated');
%% Plots
load(trackDataFileName);
leftLine = TestTrack.bl;
rightLine = TestTrack.br;
load(initialTrajectoryFileName);
initialTraj_X = InitialTraj.states(:,1);
initialTraj_Y = InitialTraj.states(:,3);
load(finalTrajectoryFileName);
finalTraj_X = FinalTraj.states(:,1);
finalTraj_Y = FinalTraj.states(:,3);
figure(1)
title('Initial Trajectory - Using Proportional Controller')
hold on
plot(initialTraj_X, initialTraj_Y, 'r','LineWidth',2);
plot(leftLine(1,:), leftLine(2,:), 'k','LineWidth',1);
plot(rightLine(1,:),rightLine(2,:),'k','LineWidth',1);
legend('Trajectory','Left Border','Right Border','Location','NorthWest')
hold off
figure(2)
title('Final Trajectory - Using MPC Controller')
hold on
plot(finalTraj_X,   finalTraj_Y,   'r','LineWidth',2);
plot(leftLine(1,:), leftLine(2,:), 'k','LineWidth',1);
plot(rightLine(1,:),rightLine(2,:),'k','LineWidth',1);
legend('Trajectory','Left Border','Right Border','Location','NorthWest')
hold off
figure(3)
title('Comparing initial part of track')
subplot(2,1,1);
hold on
plot(initialTraj_X, initialTraj_Y, 'r','LineWidth',2);
plot(leftLine(1,:), leftLine(2,:), 'k','LineWidth',1);
plot(rightLine(1,:),rightLine(2,:),'k','LineWidth',1);
legend('Trajectory','Left Border','Right Border','Location','NorthWest')
hold off
subplot(2,1,2);
hold on
plot(finalTraj_X,   finalTraj_Y,   'r','LineWidth',2);
plot(leftLine(1,:), leftLine(2,:), 'k','LineWidth',1);
plot(rightLine(1,:),rightLine(2,:),'k','LineWidth',1);
legend('Trajectory','Left Border','Right Border','Location','NorthWest')
hold off


目录
打赏
0
0
0
0
77
分享
相关文章
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
6月前
|
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等