基于蚁群算法求解运钞车路径规划问题(Matlab代码实现)

简介: 基于蚁群算法求解运钞车路径规划问题(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

车辆路径规划问题(Vehicle Routing Problem,VRP)是运筹学里重要的研究问题之一。VRP关注有一个供货商与K个销售点的路径规划的情况,可以简述为:对一系列发货点和收货点,组织调用一定的车辆,安排适当的行车路线,使车辆有序地通过它们,在满足指定的约束条件下(例如:货物的需求量与发货量,交发货时间,车辆容量限制,行驶里程限制,行驶时间限制等),力争实现一定的目标(如车辆空驶总里程最短,运输总费用最低,车辆按一定时间到达,使用的车辆数最小等)。


在自然界中各种生物群体显现出来的智能近几十年来得到了学者们的广泛关注,学者们通过对简单生物体的群体行为进行模拟,进而提出了群智能算法。其中, 模拟蚁群觅食过程的蚁群优化算法(Ant Colony Optimization, ACO) 和模拟鸟群运动方式的粒子群算(Particle Swarm Optimization,PSO) 是两种最主要的群智能算法。蚁群算法是一种源于大自然生物世界的新的仿生进化算法,由意大利学者M.Dorigo, V.Mani ezzo和A.Color ni等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻径行为而提出的一种基于种群的启发式随机搜索算法.蚂蚁有能力在没有任何提示的情形下找到从巢穴到食物源的最短路径,并且能随环境的变化,适应性地搜索新的路径,产生新的选择。其根本原因是蚂蚁在寻找食物时,能在其走过的路径上释放一种特殊的分泌物――信息素,随着时间的推移该物质会逐渐挥发,后来的蚂蚁选择该路径的概率与当时这条路径上信息素的强度成正比。当一条路径上通过的蚂蚁越来越时,其留下的信息素也越来越多,后来蚂蚁选择该路径的概率也就越高,从而更增加了该路径上的信息素强度。而强度大的信息素会吸引更多的蚂蚁,从而形成一种正反馈机制。通过这种正反馈机制,蚂蚁最终可以发现最短路径。

最早的蚁群算法是蚂蚁系统(Ant System, AS) , 研究者们根据不同的改进策略对蚂蚁系统进行改进并开发了不同版本的蚁群算法,并成功地应用于优化领域。用该方法求解旅行商(TSP) 问题、分配问题、车间作业调度(job-shop) 问题, 取得了较好的试验结果。蚁群算法具有分布式计算、无中心控制和分布式个体之间间接通信等特征,易于与其他优化算法相结合,它通过简单个体之间的协作表现出了求解复杂问题的能力,已被广泛应用于求解优化问题。蚁群算法相对而言易于实现,且算法中并不涉及复杂的数学操作,其处理过程对计算机的软硬件要求也不高,因此对它的研究在理论和实践中都具有重要的意义。

目前,国内外的许多研究者和研究机构都开展了对蚁群算法理论和应用的研究,蚁群算法已成为国际计算智能领域关注的热点课题。虽然目前蚁群算法没有形成严格的理论基础,但其作为一种新兴的进化算法已在智能优化等领域表现出了强大的生命力。


✨🔎⚡运行结果⚡🔎✨

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

route1=[1 21 20 19];
route2=[1 23 31 24];
route3=[1 25 29 26];
route4=[1 33 39 38 34 32 30];
route5=[1 5 2 4 7 10];
route6=[1 9 8 3 6 13 17];
route7=[1 15 11 12 18];
route8=[1 22 27 16 14];
route9=[1 28 35 37 36];
load data.txt; %从文本文件加载数据
city_xy_ary=data(:,2:3); %得到网点的坐标数据
figure(2)
a=[];
b=[];
for i=1:length(route1(:))
    a=[a city_xy_ary(route1(i),1)];
    b=[b city_xy_ary(route1(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route2(:))
    a=[a city_xy_ary(route2(i),1)];
    b=[b city_xy_ary(route2(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route3(:))
    a=[a city_xy_ary(route3(i),1)];
    b=[b city_xy_ary(route3(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route4(:))
    a=[a city_xy_ary(route4(i),1)];
    b=[b city_xy_ary(route4(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route5(:))
    a=[a city_xy_ary(route5(i),1)];
    b=[b city_xy_ary(route5(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route6(:))
    a=[a city_xy_ary(route6(i),1)];
    b=[b city_xy_ary(route6(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route7(:))
    a=[a city_xy_ary(route7(i),1)];
    b=[b city_xy_ary(route7(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route8(:))
    a=[a city_xy_ary(route8(i),1)];
    b=[b city_xy_ary(route8(i),2)];
end
plot(a,b,'.-');
hold on
a=[];
b=[];
for i=1:length(route9(:))
    a=[a city_xy_ary(route9(i),1)];
    b=[b city_xy_ary(route9(i),2)];
end
plot(a,b,'.-');
hold on
hold off


📜📢🌈参考文献🌈📢📜

[1]鲁皓. 银行运钞车车辆路径优化问题研究[D].华中科技大学,2020.DOI:10.27157/d.cnki.ghzku.2020.003479.

相关文章
|
7天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
12天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
15天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
16天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
16天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
16天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
35 3
|
30天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
17天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
27天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
下一篇
无影云桌面