图注意力网络论文详解和PyTorch实现

简介: 图神经网络(gnn)是一类功能强大的神经网络,它对图结构数据进行操作。它们通过从节点的局部邻域聚合信息来学习节点表示(嵌入)。这个概念在图表示学习文献中被称为“消息传递”。

消息(嵌入)通过多个GNN层在图中的节点之间传递。每个节点聚合来自其邻居的消息以更新其表示。这个过程跨层重复,允许节点获得编码有关图的更丰富信息的表示。gnn的一主要变体有GraphSAGE[2]、Graph Convolution Network[3]等。

图注意力网络(GAT)[1]是一类特殊的gnn,主要的改进是消息传递的方式。他们引入了一种可学习的注意力机制,通过在每个源节点和目标节点之间分配权重,使节点能够在聚合来自本地邻居的消息时决定哪个邻居节点更重要,而不是以相同的权重聚合来自所有邻居的信息。

图注意力网络在节点分类、链接预测和图分类等任务上优于许多其他GNN模型。他们在几个基准图数据集上也展示了最先进的性能。

在这篇文章中,我们将介绍原始“Graph Attention Networks”(by Veličković )论文的关键部分,并使用PyTorch实现论文中提出的概念,这样以更好地掌握GAT方法。

论文引言

在第1节“引言”中对图表示学习文献中的现有方法进行了广泛的回顾之后,论文介绍了图注意网络(GAT)。

然后将论文的方法与现有的一些方法进行比较,并指出它们之间的一般异同,这是论文的常用格式,就不多介绍了。

GAT的架构

本节是本文的主要部分,对图注意力网络的体系结构进行了详细的阐述。为了进一步解释,假设所提出的架构在一个有N个节点的图上执行(V = {V′};i=1,…,N),每个节点用向量h ^ (F个元素)表示,节点之间存在任意边。

作者首先描述了单个图注意力层的特征,以及它是如何运作的(因为它是图注意力网络的基本构建块)。一般来说,单个GAT层应该将具有给定节点嵌入(表示)的图作为输入,将信息传播到本地邻居节点,并输出更新后的节点表示。

如上所述,ga层的所有输入节点特征向量(h′)都是线性变换的(即乘以一个权重矩阵W),在PyTorch中,通常是这样做的:

 import torch
 from torch import nn

 # in_features -> F and out_feature -> F'
 in_features = ...
 out_feature = ...

 # instanciate the learnable weight matrix W (FxF')
 W = nn.Parameter(torch.empty(size=(in_features, out_feature)))

 #  Initialize the weight matrix W
 nn.init.xavier_normal_(W)

 # multiply W and h (h is input features of all the nodes -> NxF matrix)
 h_transformed = torch.mm(h, W)

获得了输入节点特征(嵌入)的转换版本后我们先跳到最后查看和理解GAT层的最终目标是什么。

如论文所述,在图注意层的最后,对于每个节点i,我们需要从其邻域获得一个新的特征向量,该特征向量更具有结构和上下文感知性。

这是通过计算相邻节点特征的加权和,然后是非线性激活函数σ来完成的。根据Graph ML文献,这个加权和在一般GNN层操作中也被称为“聚合”步骤。

论文的这些权重α′ⱼ∈[0,1]是通过一种关注机制来学习和计算的,该机制表示在消息传递和聚合过程中节点i的邻居j特征的重要性。

每一对节点i和它的邻居j计算这些注意权值α′ⱼ的计算方法如下

其中e ^ⱼ是注意力得分,在应用Softmax函数后,有权重都会在[0,1]区间内,并且和为1。现在通过注意函数a(…)计算每个节点i和它的邻居j∈N′之间的注意分数e′ⱼ,如下所示:

上图中的||表示两个转换后的节点嵌入的连接,a是大小为2 * F '(转换后嵌入大小的两倍)的可学习参数(即注意力参数)向量。而(a¹)是向量a的转置,导致整个表达式a¹[Wh′|| Whⱼ]是“a”与转换后的嵌入的连接之间的点(内)积。

整个操作说明如下:

在PyTorch中,我们采用了一种稍微不同的方法。因为计算所有节点对之间的e′ⱼ然后只选择代表节点之间现有边的那些是更有效的。来计算所有的e′ⱼ

 # instanciate the learnable attention parameter vector `a`
 a = nn.Parameter(torch.empty(size=(2 * out_feature, 1)))

 # Initialize the parameter vector `a`
 nn.init.xavier_normal_(a)

 # we obtained `h_transformed` in the previous code snippet

 # calculating the dot product of all node embeddings
 # and first half the attention vector parameters (corresponding to neighbor messages)
 source_scores = torch.matmul(h_transformed, self.a[:out_feature, :])

 # calculating the dot product of all node embeddings
 # and second half the attention vector parameters (corresponding to target node)
 target_scores = torch.matmul(h_transformed, self.a[out_feature:, :])

 # broadcast add 
 e = source_scores + target_scores.T
 e = self.leakyrelu(e)

代码片段的最后一部分(# broadcast add)将所有一对一的源和目标分数相加,得到一个包含所有e′ⱼ分数的NxN矩阵。(下图所示)

到目前为止,我们假设图是完全连接的,我们计算的是所有可能的节点对之间的注意力得分。但是其实大部分情况下图不可能是完全连接的,所以为了解决这个问题,在将LeakyReLU激活应用于注意力分数之后,注意力分数基于图中现有的边被屏蔽,这意味着我们只保留与现有边对应的分数。

它可以通过给不存在边的节点之间的分数矩阵中的元素分配一个大的负分数(近似于-∞)来完成,这样它们对应的注意力权重在softmax之后变为零(还记得我们以前发的注意力掩码么,就是一样的道理)。

这里的注意力掩码是通过使用图的邻接矩阵来实现的。邻接矩阵是一个NxN矩阵,如果节点i和j之间存在一条边,则在第i行和第j列处为1,在其他地方为0。因此,我们通过将邻接矩阵的零元素赋值为-∞并在其他地方赋值为0来创建掩码。然后将掩码添加到分数矩阵中。然后在它的行上应用softmax函数。

 connectivity_mask = -9e16 * torch.ones_like(e)
 # adj_mat is the N by N adjacency matrix
 e = torch.where(adj_mat > 0, e, connectivity_mask) # masked attention scores

 # attention coefficients are computed as a softmax over the rows
 # for each column j in the attention score matrix e
 attention = F.softmax(e, dim=-1)

最后,根据论文描述,在获得注意力分数并将其与现有的边进行掩码遮蔽后,通过对分数矩阵的行执行softmax,得到注意力权重α¹ⱼ。

我们通过一个完整的可视化图过程如下:

最后就是计算节点嵌入的加权和:

 # final node embeddings are computed as a weighted average of the features of its neighbors
 h_prime = torch.matmul(attention, h_transformed)

以上一个一个注意力头的工作流程和原理,论文还引入了多头的概念,其中所有操作都是通过多个并行的操作流来完成的。

多头注意力和聚合过程如下图所示:

节点1在其邻域中的多头注意力(K = 3个头),不同的箭头样式和颜色表示独立的注意力计算。将来自每个头部的聚合特征连接或平均以获得h '。

为了以更简洁的模块化形式(作为PyTorch模块)封装实现并合并多头注意力的功能,整个Graph关注层的实现如下:

 import torch
 from torch import nn
 import torch.nn.functional as F

 ################################
 ###  GAT LAYER DEFINITION    ###
 ################################

 class GraphAttentionLayer(nn.Module):

     def __init__(self, in_features: int, out_features: int,
                  n_heads: int, concat: bool = False, dropout: float = 0.4,
                  leaky_relu_slope: float = 0.2):
         super(GraphAttentionLayer, self).__init__()

         self.n_heads = n_heads # Number of attention heads
         self.concat = concat # wether to concatenate the final attention heads
         self.dropout = dropout # Dropout rate

         if concat: # concatenating the attention heads
             self.out_features = out_features # Number of output features per node
             assert out_features % n_heads == 0 # Ensure that out_features is a multiple of n_heads
             self.n_hidden = out_features // n_heads
         else: # averaging output over the attention heads (Used in the main paper)
             self.n_hidden = out_features

         #  A shared linear transformation, parametrized by a weight matrix W is applied to every node
         #  Initialize the weight matrix W 
         self.W = nn.Parameter(torch.empty(size=(in_features, self.n_hidden * n_heads)))

         # Initialize the attention weights a
         self.a = nn.Parameter(torch.empty(size=(n_heads, 2 * self.n_hidden, 1)))

         self.leakyrelu = nn.LeakyReLU(leaky_relu_slope) # LeakyReLU activation function
         self.softmax = nn.Softmax(dim=1) # softmax activation function to the attention coefficients

         self.reset_parameters() # Reset the parameters


     def reset_parameters(self):

         nn.init.xavier_normal_(self.W)
         nn.init.xavier_normal_(self.a)

     def _get_attention_scores(self, h_transformed: torch.Tensor):

         source_scores = torch.matmul(h_transformed, self.a[:, :self.n_hidden, :])
         target_scores = torch.matmul(h_transformed, self.a[:, self.n_hidden:, :])

         # broadcast add 
         # (n_heads, n_nodes, 1) + (n_heads, 1, n_nodes) = (n_heads, n_nodes, n_nodes)
         e = source_scores + target_scores.mT
         return self.leakyrelu(e)

     def forward(self,  h: torch.Tensor, adj_mat: torch.Tensor):

         n_nodes = h.shape[0]

         # Apply linear transformation to node feature -> W h
         # output shape (n_nodes, n_hidden * n_heads)
         h_transformed = torch.mm(h, self.W)
         h_transformed = F.dropout(h_transformed, self.dropout, training=self.training)

         # splitting the heads by reshaping the tensor and putting heads dim first
         # output shape (n_heads, n_nodes, n_hidden)
         h_transformed = h_transformed.view(n_nodes, self.n_heads, self.n_hidden).permute(1, 0, 2)

         # getting the attention scores
         # output shape (n_heads, n_nodes, n_nodes)
         e = self._get_attention_scores(h_transformed)

         # Set the attention score for non-existent edges to -9e15 (MASKING NON-EXISTENT EDGES)
         connectivity_mask = -9e16 * torch.ones_like(e)
         e = torch.where(adj_mat > 0, e, connectivity_mask) # masked attention scores

         # attention coefficients are computed as a softmax over the rows
         # for each column j in the attention score matrix e
         attention = F.softmax(e, dim=-1)
         attention = F.dropout(attention, self.dropout, training=self.training)

         # final node embeddings are computed as a weighted average of the features of its neighbors
         h_prime = torch.matmul(attention, h_transformed)

         # concatenating/averaging the attention heads
         # output shape (n_nodes, out_features)
         if self.concat:
             h_prime = h_prime.permute(1, 0, 2).contiguous().view(n_nodes, self.out_features)
         else:
             h_prime = h_prime.mean(dim=0)

         return h_prime

最后将上面所有的代码整合成一个完整的GAT模型:

 class GAT(nn.Module):

     def __init__(self,
         in_features,
         n_hidden,
         n_heads,
         num_classes,
         concat=False,
         dropout=0.4,
         leaky_relu_slope=0.2):

         super(GAT, self).__init__()

         # Define the Graph Attention layers
         self.gat1 = GraphAttentionLayer(
             in_features=in_features, out_features=n_hidden, n_heads=n_heads,
             concat=concat, dropout=dropout, leaky_relu_slope=leaky_relu_slope
             )

         self.gat2 = GraphAttentionLayer(
             in_features=n_hidden, out_features=num_classes, n_heads=1,
             concat=False, dropout=dropout, leaky_relu_slope=leaky_relu_slope
             )

     def forward(self, input_tensor: torch.Tensor , adj_mat: torch.Tensor):


         # Apply the first Graph Attention layer
         x = self.gat1(input_tensor, adj_mat)
         x = F.elu(x) # Apply ELU activation function to the output of the first layer

         # Apply the second Graph Attention layer
         x = self.gat2(x, adj_mat)

         return F.softmax(x, dim=1) # Apply softmax activation function

方法对比

作者对GATs和其他一些现有GNN方法/架构进行了比较:

  • 由于GATs能够计算注意力权重并并行执行局部聚合,因此它比现有的一些方法计算效率更高。
  • GATs可以在聚合消息时为节点的邻居分配不同的重要性,这可以实现模型容量的飞跃并提高可解释性。
  • GAT不考虑节点的完整邻域(不需要从邻域采样),也不假设节点内部有任何排序。
  • 通过将伪坐标函数设置为u(x, y) = f(x)||f(y), GAT可以重新表述为MoNet的一个特定实例(Monti等人,2016),其中f(x)表示(可能是mlp转换的)节点x的特征,而||是连接;权函数为wj(u) = softmax(MLP(u))

基准测试

在论文的第三部分中,作者描述了评估GAT的基准、数据集和任务。然后,他们提出了他们对模型的评估结果。

论文中用作基准的数据集分为两种类型的任务,转换和归纳。

归纳学习:这是一种监督学习任务,其中模型仅在一组标记的训练样例上进行训练,并且在训练过程中完全未观察到的样例上对训练后的模型进行评估和测试。这是一种被称为普通监督学习的学习类型。

传导学习:在这种类型的任务中,所有的数据,包括训练、验证和测试实例,都在训练期间使用。但是在每个阶段,模型只访问相应的标签集。这意味着在训练期间,模型只使用由训练实例和标签产生的损失进行训练,但测试和验证特征用于消息传递。这主要是因为示例中存在的结构和上下文信息。

论文使用四个基准数据集来评估GATs,其中三个对应于传导学习,另一个用作归纳学习任务。

转导学习数据集,即Cora、Citeseer和Pubmed (Sen et al., 2008)数据集都是引文图,其中节点是已发布的文档,边(连接)是它们之间的引用,节点特征是文档的词包表示的元素。

归纳学习数据集是一个蛋白质-蛋白质相互作用(PPI)数据集,其中包含不同人体组织的图形(Zitnik & Leskovec, 2017)。数据集的详细描述如下:

作者报告了四个基准测试的以下性能,显示了GATs与现有GNN方法的可比结果。

总结

通过阅读这篇文章并试用代码,希望你能够对GATs的工作原理以及如何在实际场景中应用它们有一个扎实的理解。

本文的完整代码在这里:

https://avoid.overfit.cn/post/ce3ce12eca5b4de9949f4424bc03dcf6

最后还有引用

[1] — Graph Attention Networks (2017), Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, Yoshua Bengio. arXiv:1710.10903v3

[2] — Inductive Representation Learning on Large Graphs (2017), William L. Hamilton, Rex Ying, Jure Leskovec. arXiv:1706.02216v4

[3] — Semi-Supervised Classification with Graph Convolutional Networks (2016), Thomas N. Kipf, Max Welling. arXiv:1609.02907v4

作者:Ebrahim Pichka

目录
相关文章
|
23天前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
53 3
|
1月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
267 0
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
92 10
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
271 1
|
1月前
|
机器学习/深度学习 Web App开发 人工智能
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》这篇论文提出了一种基于YOLOv3-Tiny的轻量级目标检测模型Micro-YOLO,通过渐进式通道剪枝和轻量级卷积层,显著减少了参数数量和计算成本,同时保持了较高的检测性能。
33 2
轻量级网络论文精度笔(一):《Micro-YOLO: Exploring Efficient Methods to Compress CNN based Object Detection Model》
|
1月前
|
机器学习/深度学习 编解码 算法
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
56 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
57 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
27 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
1月前
|
编解码 人工智能 文件存储
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
YOLOv7是一种新的实时目标检测器,通过引入可训练的免费技术包和优化的网络架构,显著提高了检测精度,同时减少了参数和计算量。该研究还提出了新的模型重参数化和标签分配策略,有效提升了模型性能。实验结果显示,YOLOv7在速度和准确性上超越了其他目标检测器。
47 0
轻量级网络论文精度笔记(二):《YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object ..》
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
192 59

热门文章

最新文章