m基于FPGA的16QAM软解调verilog实现,含testbench

简介: m基于FPGA的16QAM软解调verilog实现,含testbench

1.算法仿真效果

本系统进行了两个平台的开发,分别是:

Vivado2019.2

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition

其中Vivado2019.2仿真结果如下:
eb99a2011534dd1305420b1eedb32ec6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
89f328b3a4844f60a32fbc92cc603a43_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition的测试结果如下:

2d5bb58a110c6fd822762319fa8249d1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
774abe1eccaa011aa2ac912f21270129_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
16QAM软解调是一种常用的数字调制解调技术,用于将接收到的16QAM调制的信号转换为原始数据。该技术结合了16种相位和振幅的调制方式,通过软判决算法对接收信号进行解调,16QAM软解调的系统原理是将接收到的16QAM调制信号转换为软判决结果,从而恢复原始数据。软解调是一种非硬判决的解调方法,它利用接收信号的采样值和相位信息来判断信号所处的调制状态,并对其进行解调。在16QAM软解调中,接收信号经过采样后,通过比较采样值和16个调制点的距离,选择最近的调制点作为解调结果。

   16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。每个复数点对应一个调制符号,通过软解调,我们可以确定接收到的信号所对应的调制符号,进而推导出原始数据。

   设接收信号的采样值为$r$,我们需要通过比较$r$与16个调制点的距离,选择最近的调制点。
AI 代码解读

解调过程
以下是16QAM软解调的具体步骤:

步骤1:接收信号采样

接收信号经过抽样过程,得到采样值r

步骤2:计算距离

计算采样值r与每个调制点的距离di,其中i=1,2,...,16。距离可以使用欧氏距离或其他度量方法进行计算。

步骤3:选择最近的调制点

选择与采样值r距离最近的调制点,记为dmin,并记录其索引imin

步骤4:软判决

根据索引imin,确定接收信号对应的调制符号。根据调制符号,可以推导出原始数据。

数学公式示例
以下是16QAM软解调的数学公式示例:

对于接收信号的采样值r,与每个调制点的距离di可以计算为:

e48a2c957793b0969fde7d72801686e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

根据索引imin可以确定接收信号对应的调制符号,并进一步推导出原始数据。

 实现16QAM软解调的难点在于选择合适的距离度量方法和判决阈值,以及在存在噪声的情况下进行准确的判决。此外,还需要解决调制点的映射问题,确保软解调能够准确还原原始数据。

   总结而言,16QAM软解调是一种通过比较采样值与调制点的距离,选择最近的调制点来解调接收信号的方法。通过软解调,可以恢复原始数据并实现高效的数据传输。
AI 代码解读

3.Verilog核心程序
````timescale 1ns / 1ns
module TEST;

reg clk;

reg rst;
reg start;

wire  [3:0] parallel_data;
wire [15:0]sin;
wire [15:0]cos;
wire signed[19:0]  I_com;
wire signed[19:0]  Q_com;
wire signed[15:0]I_comcos;
wire signed[15:0]Q_comsin;


// DUT
tops_16QAM_mod  top(
   .clk(clk),
   .rst(rst),
   .start(start),
   .parallel_data(parallel_data),
   .sin(sin),
   .cos(cos),
   .I_com(I_com),
   .Q_com(Q_com),
   .I_comcos(I_comcos),
   .Q_comsin(Q_comsin)
   );
AI 代码解读

wire signed[23:0]I_comcos2;
wire signed[23:0]Q_comsin2;
wire signed[7:0]o_Ifir;
wire signed[7:0]o_Qfir;
wire signed[15:0]o_b1;
wire signed[15:0]o_b2;
wire signed[15:0]o_b3;
wire signed[15:0]o_b4;
wire signed[3:0]o_sdout;
tops_16QAM_demod top2(
.clk(clk),

   .rst(rst),
   .start(start),
   .I_comcos(I_comcos),
   .Q_comsin(Q_comsin),
   .I_comcos2(I_comcos2),
   .Q_comsin2(Q_comsin2),
   .o_Ifir(o_Ifir),
   .o_Qfir(o_Qfir),
   .o_b1(o_b1),
   .o_b2(o_b2),
   .o_b3(o_b3),
   .o_b4(o_b4),
   .o_sdout(o_sdout)
   );  


initial begin
    clk = 0;
    rst = 0;
    start = 1;
    #10;
    rst = 1;
end

always #5
clk <= ~clk;
AI 代码解读

integer fout1;
integer fout2;
initial begin
fout1 = fopen("II.txt","w");fout2=fopen("QQ.txt","w");
end

always @ (posedge clk)
begin
if(rst==1)
begin
fwrite(fout1,"fwrite(fout2,"%d\n",Q_com);
end
end

endmodule
```

目录
打赏
0
0
0
0
231
分享
相关文章
【硬件测试】基于FPGA的1024QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的1024QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同SNR条件下的性能测试。1024QAM调制将10比特映射到复平面上的1024个星座点之一,实现高效数据传输。硬件测试结果表明,在SNR=32dB和40dB时,系统表现出良好的性能。Verilog核心程序展示了各模块的连接与功能实现。
28 7
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
【硬件测试】基于FPGA的256QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的256QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同信噪比(如30dB和40dB)的仿真测试,并提供配套操作视频。256QAM调制方案每个符号携带8比特信息,通过复数值星座图映射实现高效传输。Verilog代码展示了核心模块设计,包括SNR设置、数据处理和ILA测试分析,确保系统在实际硬件环境中的稳定性和性能。
15 2
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
【硬件测试】基于FPGA的16QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16QAM基带通信系统硬件测试版本。该系统在仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比(如15dB、25dB)的测试。16QAM是一种正交幅度调制方式,通过两路4ASK信号叠加实现,每个符号包含4比特信息。系统采用正交调幅法生成16QAM信号,并通过DAC转换为模拟信号。解调时使用正交相干解调,经低通滤波器恢复电平信号。开发板内完成发射与接收,无需定时同步模块。代码可移植至其他开发板,具体步骤见配套文档。
26 2
【硬件测试】基于FPGA的16QAM调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前开发的16QAM调制与软解调系统,增加了硬件测试功能。该系统包含FPGA实现的16QAM调制、软解调、高斯信道、误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置模块。通过硬件测试,验证了不同SNR条件下的系统性能。16QAM软解调通过比较接收信号采样值与16个调制点的距离,选择最近的调制点来恢复原始数据。核心Verilog代码实现了整个系统的功能,包括SNR设置、信号处理及误码率统计。硬件测试结果表明系统在不同SNR下表现良好,详细操作步骤可参考配套视频。
28 13
【硬件测试】基于FPGA的64QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的64QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集模块和vio在线SNR设置模块,支持不同SNR条件下的仿真与测试。通过设置SNR为25dB和30dB进行测试,验证了系统的可行性和性能。此外,本文详细阐述了64QAM调制解调的工作原理,包括信号生成、调制、解调及误码率测试等环节,并提供了Verilog核心程序代码。
18 0
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
134 74
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
191 69
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
110 26

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等