m基于FPGA的16QAM软解调verilog实现,含testbench

简介: m基于FPGA的16QAM软解调verilog实现,含testbench

1.算法仿真效果

本系统进行了两个平台的开发,分别是:

Vivado2019.2

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition

其中Vivado2019.2仿真结果如下:
eb99a2011534dd1305420b1eedb32ec6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
89f328b3a4844f60a32fbc92cc603a43_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition的测试结果如下:

2d5bb58a110c6fd822762319fa8249d1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
774abe1eccaa011aa2ac912f21270129_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
16QAM软解调是一种常用的数字调制解调技术,用于将接收到的16QAM调制的信号转换为原始数据。该技术结合了16种相位和振幅的调制方式,通过软判决算法对接收信号进行解调,16QAM软解调的系统原理是将接收到的16QAM调制信号转换为软判决结果,从而恢复原始数据。软解调是一种非硬判决的解调方法,它利用接收信号的采样值和相位信息来判断信号所处的调制状态,并对其进行解调。在16QAM软解调中,接收信号经过采样后,通过比较采样值和16个调制点的距离,选择最近的调制点作为解调结果。

   16QAM调制将每四个比特映射到一个复数点上,共有16种相位和振幅的调制方式。每个复数点对应一个调制符号,通过软解调,我们可以确定接收到的信号所对应的调制符号,进而推导出原始数据。

   设接收信号的采样值为$r$,我们需要通过比较$r$与16个调制点的距离,选择最近的调制点。

解调过程
以下是16QAM软解调的具体步骤:

步骤1:接收信号采样

接收信号经过抽样过程,得到采样值$r$。

步骤2:计算距离

计算采样值$r$与每个调制点的距离$d_i$,其中$i=1,2,...,16$。距离可以使用欧氏距离或其他度量方法进行计算。

步骤3:选择最近的调制点

选择与采样值$r$距离最近的调制点,记为$d_{\min}$,并记录其索引$i_{\min}$。

步骤4:软判决

根据索引$i_{\min}$,确定接收信号对应的调制符号。根据调制符号,可以推导出原始数据。

数学公式示例
以下是16QAM软解调的数学公式示例:

对于接收信号的采样值$r$,与每个调制点的距离$d_i$可以计算为:

e48a2c957793b0969fde7d72801686e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

根据索引$i_{\min}$可以确定接收信号对应的调制符号,并进一步推导出原始数据。

 实现16QAM软解调的难点在于选择合适的距离度量方法和判决阈值,以及在存在噪声的情况下进行准确的判决。此外,还需要解决调制点的映射问题,确保软解调能够准确还原原始数据。

   总结而言,16QAM软解调是一种通过比较采样值与调制点的距离,选择最近的调制点来解调接收信号的方法。通过软解调,可以恢复原始数据并实现高效的数据传输。

3.Verilog核心程序
````timescale 1ns / 1ns
module TEST;

reg clk;

reg rst;
reg start;

wire  [3:0] parallel_data;
wire [15:0]sin;
wire [15:0]cos;
wire signed[19:0]  I_com;
wire signed[19:0]  Q_com;
wire signed[15:0]I_comcos;
wire signed[15:0]Q_comsin;


// DUT
tops_16QAM_mod  top(
   .clk(clk),
   .rst(rst),
   .start(start),
   .parallel_data(parallel_data),
   .sin(sin),
   .cos(cos),
   .I_com(I_com),
   .Q_com(Q_com),
   .I_comcos(I_comcos),
   .Q_comsin(Q_comsin)
   );

wire signed[23:0]I_comcos2;
wire signed[23:0]Q_comsin2;
wire signed[7:0]o_Ifir;
wire signed[7:0]o_Qfir;
wire signed[15:0]o_b1;
wire signed[15:0]o_b2;
wire signed[15:0]o_b3;
wire signed[15:0]o_b4;
wire signed[3:0]o_sdout;
tops_16QAM_demod top2(
.clk(clk),

   .rst(rst),
   .start(start),
   .I_comcos(I_comcos),
   .Q_comsin(Q_comsin),
   .I_comcos2(I_comcos2),
   .Q_comsin2(Q_comsin2),
   .o_Ifir(o_Ifir),
   .o_Qfir(o_Qfir),
   .o_b1(o_b1),
   .o_b2(o_b2),
   .o_b3(o_b3),
   .o_b4(o_b4),
   .o_sdout(o_sdout)
   );  


initial begin
    clk = 0;
    rst = 0;
    start = 1;
    #10;
    rst = 1;
end

always #5
clk <= ~clk;

integer fout1;
integer fout2;
initial begin
fout1 = $fopen("II.txt","w");
fout2 = $fopen("QQ.txt","w");
end

always @ (posedge clk)
begin
if(rst==1)
begin
$fwrite(fout1,"%d\n",I_com);
$fwrite(fout2,"%d\n",Q_com);
end
end

endmodule
```

相关文章
|
18天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
109 74
|
26天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的信号发生器verilog实现,可以输出方波,脉冲波,m序列以及正弦波,可调整输出信号频率
本项目基于Vivado2019.2实现信号发生器,可输出方波、脉冲波、m随机序列和正弦波。完整程序无水印,含详细中文注释与操作视频。FPGA技术使信号发生器精度高、稳定性强、功能多样,适用于电子工程、通信等领域。方波、脉冲波、m序列及正弦波的生成原理分别介绍,代码核心部分展示。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
147 69
|
17天前
|
存储 编解码 算法
基于FPGA的直接数字频率合成器verilog实现,包含testbench
本项目基于Vivado 2019.2实现DDS算法,提供完整无水印运行效果预览。DDS(直接数字频率合成器)通过数字信号处理技术生成特定频率和相位的正弦波,核心组件包括相位累加器、正弦查找表和DAC。相位累加器在每个时钟周期累加频率控制字,正弦查找表根据相位值输出幅度,DAC将数字信号转换为模拟电压。项目代码包含详细中文注释及操作视频。
|
1月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
77 26
|
2月前
|
算法 异构计算
基于FPGA的4ASK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4-ASK调制解调系统的算法仿真效果、理论基础及Verilog核心程序。仿真在Vivado2019.2环境下进行,分别测试了SNR为20dB、15dB、10dB时的性能。理论部分概述了4-ASK的工作原理,包括调制、解调过程及其数学模型。Verilog代码实现了4-ASK调制器、加性高斯白噪声(AWGN)信道模拟、解调器及误码率计算模块。
80 8
|
2月前
|
算法 物联网 异构计算
基于FPGA的4FSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的4FSK调制解调系统的Verilog实现,包括高斯信道模块和误码率统计模块,支持不同SNR设置。系统在Vivado 2019.2上开发,展示了在不同SNR条件下的仿真结果。4FSK调制通过将输入数据转换为四个不同频率的信号来提高频带利用率和抗干扰能力,适用于无线通信和数据传输领域。文中还提供了核心Verilog代码,详细描述了调制、加噪声、解调及误码率计算的过程。
80 11
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
59 1
|
3月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
74 4
|
3月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。

热门文章

最新文章