阿里云服务器X86计算、ARM计算、GPU/FPGA/ASIC等架构区别及选择参考

本文涉及的产品
轻量应用服务器 2vCPU 4GiB,适用于搭建容器环境
轻量应用服务器 4vCPU 16GiB,适用于搭建游戏自建服
轻量应用服务器 2vCPU 4GiB,适用于搭建Web应用/小程序
简介: 在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、超级计算集群之分,很多初次接触阿里云服务器的用户并不知道他们之间有何区别,本文来介绍一下阿里云服务器各个架构的特点及适用场景,以供大家了解他们之间的区别,从而对选择哪种架构做一个参考。

在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、超级计算集群之分,很多初次接触阿里云服务器的用户并不知道他们之间有何区别,本文来介绍一下阿里云服务器各个架构的特点及适用场景,以供大家了解他们之间的区别,从而对选择哪种架构做一个参考。

更多关于云服务器ECS的相关介绍可以参考官网云服务器ECS:https://www.aliyun.com/product/ecs
架构类型.png

一、X86计算架构

架构特点:具有性能稳定且资源独享的特点,企业级x86每一个vCPU都对应一个Intel Xeon处理器核心的超线程;
适用场景:X86计算架构适用于绝大部分用户的上云场景,是一般用户选择阿里云服务器的主要架构,一般用户在选择阿里云服务器实例规格时,都是基于X86计算架构来选择的。

二、ARM计算架构

架构特点ARM计算架构采用阿里云自研倚天710 ARM架构CPU,依托第四代神龙架构,提供稳定可预期的超高性能。同时通过芯片快速路径加速手段,完成存储、网络性能以及计算稳定性的数量级提升。基于ARM架构的实例规格,每一个vCPU都对应一个处理器的物理核心,具有性能稳定且资源独享的特点
适用场景:容器、微服务、网站和应用服务器、视频编解码、高性能计算、基于CPU的机器学习等。

三、GPU/FPGA/ASIC

架构特点:具有比传统CPU并行计算更高效率和低延迟的计算性能,尤其是业界对计算性能需求水涨船高的情况下,异构计算变得愈发重要。GPU有更高的并行度、更高的单机计算峰值、更高的计算效率;而FPGA的优势则主要体现在它拥有更高的每瓦性能、非规整数据计算更高的性能、更高的硬件加速性能、更低的设备互联延迟。
适用场景:适用于高性能计算、渲染、深度学习,价格高于X86计算架构;

四、弹性裸金属服务器架构

架构特点:融合了物理机与云服务器的优势,实现超强超稳的计算能力。弹性裸金属服务器开创了一种新型的云服务器形式,它能与阿里云产品家族中的其他产品(例如存储、网络、数据库等)无缝对接,并完全兼容ECS云服务器实例的镜像系统,从而可更多元化地结合您的业务场景进行资源构建。
适用场景:弹性裸金属服务器具备物理机级别的完整处理器特性(例如Intel VT-x),以及物理机级别的资源隔离优势,特别适合上云部署传统非虚拟化场景的应用。

五、超级计算集群

架构特点:超级计算集群在弹性裸金属服务器基础上,加入高速RDMA(Remote Direct Memory Access)互联支持,大幅提升网络性能,提高大规模集群加速比。在提供高带宽、低延迟优质网络的同时,还具备弹性裸金属服务器的所有优点。
适用场景:主要用于高性能计算和人工智能/机器学习、科学/工程计算、数据分析、音视频处理等应用场景。在集群内,各节点间通过RDMA网络互联,提供高带宽低延迟网络,保证了高性能计算和人工智能/机器学习等应用的高度并行需求。同时,RoCE(RDMA over Convergent Ethernet)网络速度达到InfiniBand网络级的性能,且能支持更广泛的基于Ethernet的应用。

对于普通用户来说,我们对云服务器的性能相对要求不是很高,一般选择X86计算架构即可,这也是阿里云服务器所有架构中价格相对来说最便宜的。另外,阿里云官方还会不定期通过领券中心等平台推出优惠券或代金券活动,无论我们是选择哪种架构的云服务器,在购买之前可先了解一下当下是否有代金券能领取,如果有的话,可先领券然后再购买,账号下有代金券之后,我们结算订单的时还能使用代金券再抵扣一笔。

相关实践学习
快速体验PolarDB开源数据库
本实验环境已内置PostgreSQL数据库以及PolarDB开源数据库:PolarDB PostgreSQL版和PolarDB分布式版,支持一键拉起使用,方便各位开发者学习使用。
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
20天前
|
存储 机器学习/深度学习 算法
阿里云X86/ARM/GPU/裸金属/超算等五大服务器架构技术特点、场景适配与选型策略
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别。本文将深入解析这些架构的特点、优势及适用场景,帮助用户更好地根据实际需求做出选择。
|
4月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器ECS架构区别及选择参考:X86计算、ARM计算等架构介绍
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别,本文主要简单介绍下这些架构各自的主要性能及适用场景,以便大家了解不同类型的架构有何不同,主要特点及适用场景有哪些。
581 10
|
6月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
320 7
|
28天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于FPGA的SNN脉冲神经网络之LIF神经元verilog实现,包含testbench
本项目展示了 LIF(Leaky Integrate-and-Fire)神经元算法的实现与应用,含无水印运行效果预览。基于 Vivado2019.2 开发,完整代码配有中文注释及操作视频。LIF 模型模拟生物神经元特性,通过积分输入信号并判断膜电位是否达阈值产生脉冲,相较于 Hodgkin-Huxley 模型更简化,适合大规模神经网络模拟。核心程序片段示例,助您快速上手。
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的变步长LMS自适应滤波器verilog实现,包括testbench
### 自适应滤波器仿真与实现简介 本项目基于Vivado2022a实现了变步长LMS自适应滤波器的FPGA设计。通过动态调整步长因子,该滤波器在收敛速度和稳态误差之间取得良好平衡,适用于信道均衡、噪声消除等信号处理应用。Verilog代码展示了关键模块如延迟单元和LMS更新逻辑。仿真结果验证了算法的有效性,具体操作可参考配套视频。
179 74
|
2月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的2ASK+帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可设置SNR
本内容展示了基于Vivado2019.2的算法仿真效果,包括设置不同信噪比(SNR=8db和20db)下的结果及整体波形。同时,详细介绍了2ASK调制解调技术的原理与实现,即通过改变载波振幅传输二进制信号,并提供数学公式支持。此外,还涉及帧同步理论,用于确定数据帧起始位置。最后,给出了Verilog核心程序代码,实现了2ASK解调与帧同步功能,结合DDS模块生成载波信号,完成信号处理流程。
35 0
|
2月前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
5月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现了16QAM基带通信系统,包括调制、信道仿真、解调及误码率统计模块。通过Vivado2019.2仿真,设置不同SNR(如8dB、12dB),验证了软解调相较于传统16QAM系统的优越性,误码率显著降低。系统采用Verilog语言编写,详细介绍了16QAM软解调的原理及实现步骤,适用于高性能数据传输场景。
267 69
|
5月前
|
移动开发 算法 数据安全/隐私保护
基于FPGA的QPSK调制+软解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的QPSK调制解调系统,通过Vivado 2019.2进行仿真,展示了在不同信噪比(SNR=1dB, 5dB, 10dB)下的仿真效果。与普通QPSK系统相比,该系统的软解调技术显著降低了误码率。文章还详细阐述了QPSK调制的基本原理、信号采样、判决、解调及软解调的实现过程,并提供了Verilog核心程序代码。
192 26

相关产品

  • 云服务器 ECS
  • GPU云服务器