如何将个人NAS里的Stable Diffusion模型库挂载到PAI-EAS

本文涉及的产品
文件存储 NAS,50GB 3个月
简介: 本文讲述如何将自己文件存储NAS里的Stable Diffusion文件挂载到PAI-EAS,实现模型的加载和推理训练

通过在线迁移服务,您已经将SD公共模型库的模型文件转存到了自己的NAS文件目录中,该存储空间中的模型可以被用于SDWebUI,另外也可以将未来训练和推理的结果保存到该NAS目录中。您可以通过如下文件挂载方式来实现。


1.前往文件存储NAS控制台,查看存放模型库的NAS文件目录信息。

例如:041fa4940f,其中:041fa4940f为NAS文件目录名称;该NAS下已经有名为models的文件目录,该目录下存放所有类型模型。请注意此目录结构在控制台无法预览,只有被挂载到ECS,从操作系统中才能看到,此处不需要。


2.前往PAI-EAS控制台单击模型在线服务服务(EAS)操作列下的更新服务。如果您没有现有服务,请参考5分钟使用PAI-EAS一键部署Stable Diffusion AIGC绘画创建一个模型在线服务。


3.模型服务信息区域,选择NAS挂载,配置以下参数。

参数

描述

模型配置

单击填写模型配置,进行模型配置。

  • 模型配置选择NAS挂载,将NAS挂载点配置为你个人的NAS 名称,例如:041fa4940f。然后选择对应的挂载点。
  • NAS源路径:直接键入 / 即可。
  • 挂载路径:将您配置的NAS文件目录挂载到镜像的/code/stable-diffusion-webui/data-oss路径下。例如配置为:/code/stable-diffusion-webui/data-oss
  • 是否只读:开关关闭。

运行命令

运行命令中增加--data-dir 挂载目录,其中挂载目录需要与模型配置挂载路径的最后一级目录一致。例如:../webui.sh --listen --port=8000 --skip-version-check --no-hashing --no-download-sd-model --skip-install --api --filebrowser --blade --data-dir /code/stable-diffusion-webui/data-oss 


4.在最后页面单击部署

PAI会自动在您配置的NAS文件目录下创建如下目录结构,并复制必要的数据到该目录下。但是并不会覆盖已有的models目录,相反会自动识别该目录下的所有模型文件。


5.单击目标服务操作列下的>重启服务,服务重启成功后,即可生效。

PAI会自动在您配置的NAS文件目录下创建如下目录结构,并复制必要的数据到该目录下。但是并不会覆盖已有的models目录,相反会自动识别该目录下的所有模型文件。

image.png


6.后续您可以单击目标服务服务方式列下的查看Web应用,启动WebUI。在WebUI页面Stable Diffusion模型(ckpt)下拉列表中切换指定模型,进行模型推理验证。

输入如下信息:

  • 提示词:best quality, masterpiece, (best quality, masterpiece)(best quality, masterpiece), 1girl, happy, china dress, standing, looking at viewer, blurry background, earrings, hair bun, night, china town,.
  • 反向提示词:(((simple background))),monochrome ,lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, lowres, bad anatomy, bad hands, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, ugly,pregnant,vore,duplicate,morbid,mut ilated,tran nsexual, hermaphrodite,long neck,mutated hands,poorly drawn hands,poorly drawn face,mutation,deformed,blurry,bad anatomy,bad proportions,malformed limbs,extra limbs,cloned face,disfigured,gross proportions, (((missing arms))),(((missing legs))), (((extra arms))),(((extra legs))),pubic hair, plump,bad legs,error legs,username,blurry,bad feet.
  • 采样(Sampler)DPM++2MKarras
  • 相关性(CFG scale):7
  • 步数(Sampling steps):20
  • 随机种(seed):82742

模型库中也有Lora的模型文件,您可以在可选附加网络(LoRA插件)选择不同类型模型。

相关实践学习
基于ECS和NAS搭建个人网盘
本场景主要介绍如何基于ECS和NAS快速搭建个人网盘。
阿里云文件存储 NAS 使用教程
阿里云文件存储(Network Attached Storage,简称NAS)是面向阿里云ECS实例、HPC和Docker的文件存储服务,提供标准的文件访问协议,用户无需对现有应用做任何修改,即可使用具备无限容量及性能扩展、单一命名空间、多共享、高可靠和高可用等特性的分布式文件系统。 产品详情:https://www.aliyun.com/product/nas
目录
打赏
0
0
0
0
2366
分享
相关文章
PAI Model Gallery 支持云上一键部署 DeepSeek-V3、DeepSeek-R1 系列模型
DeepSeek 系列模型以其卓越性能在全球范围内备受瞩目,多次评测中表现优异,性能接近甚至超越国际顶尖闭源模型(如OpenAI的GPT-4、Claude-3.5-Sonnet等)。企业用户和开发者可使用 PAI 平台一键部署 DeepSeek 系列模型,实现 DeepSeek 系列模型与现有业务的高效融合。
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
38 6
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
118 0
FastAPI + ONNX 部署机器学习模型最佳实践
本文介绍了如何结合FastAPI和ONNX实现机器学习模型的高效部署。面对模型兼容性、性能瓶颈、服务稳定性和安全性等挑战,FastAPI与ONNX提供了高性能、易于开发维护、跨框架支持和活跃社区的优势。通过将模型转换为ONNX格式、构建FastAPI应用、进行性能优化及考虑安全性,可以简化部署流程,提升推理性能,确保服务的可靠性与安全性。最后,以手写数字识别模型为例,展示了完整的部署过程,帮助读者更好地理解和应用这些技术。
171 20
全网首发 | PAI Model Gallery一键部署阶跃星辰Step-Video-T2V、Step-Audio-Chat模型
Step-Video-T2V 是一个最先进的 (SoTA) 文本转视频预训练模型,具有 300 亿个参数,能够生成高达 204 帧的视频;Step-Audio 则是行业内首个产品级的开源语音交互模型,通过结合 130B 参数的大语言模型,语音识别模型与语音合成模型,实现了端到端的文本、语音对话生成,能和用户自然地进行高质量对话。PAI Model Gallery 已支持阶跃星辰最新发布的 Step-Video-T2V 文生视频模型与 Step-Audio-Chat 大语言模型的一键部署,本文将详细介绍具体操作步骤。
多元线性回归:机器学习中的经典模型探讨
多元线性回归是统计学和机器学习中广泛应用的回归分析方法,通过分析多个自变量与因变量之间的关系,帮助理解和预测数据行为。本文深入探讨其理论背景、数学原理、模型构建及实际应用,涵盖房价预测、销售预测和医疗研究等领域。文章还讨论了多重共线性、过拟合等挑战,并展望了未来发展方向,如模型压缩与高效推理、跨模态学习和自监督学习。通过理解这些内容,读者可以更好地运用多元线性回归解决实际问题。
|
3月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
109 6

热门文章

最新文章

相关产品

  • 文件存储 NAS