如何将个人NAS里的Stable Diffusion模型库挂载到PAI-EAS

本文涉及的产品
文件存储 NAS,50GB 3个月
简介: 本文讲述如何将自己文件存储NAS里的Stable Diffusion文件挂载到PAI-EAS,实现模型的加载和推理训练

通过在线迁移服务,您已经将SD公共模型库的模型文件转存到了自己的NAS文件目录中,该存储空间中的模型可以被用于SDWebUI,另外也可以将未来训练和推理的结果保存到该NAS目录中。您可以通过如下文件挂载方式来实现。


1.前往文件存储NAS控制台,查看存放模型库的NAS文件目录信息。

例如:041fa4940f,其中:041fa4940f为NAS文件目录名称;该NAS下已经有名为models的文件目录,该目录下存放所有类型模型。请注意此目录结构在控制台无法预览,只有被挂载到ECS,从操作系统中才能看到,此处不需要。


2.前往PAI-EAS控制台单击模型在线服务服务(EAS)操作列下的更新服务。如果您没有现有服务,请参考5分钟使用PAI-EAS一键部署Stable Diffusion AIGC绘画创建一个模型在线服务。


3.模型服务信息区域,选择NAS挂载,配置以下参数。

参数

描述

模型配置

单击填写模型配置,进行模型配置。

  • 模型配置选择NAS挂载,将NAS挂载点配置为你个人的NAS 名称,例如:041fa4940f。然后选择对应的挂载点。
  • NAS源路径:直接键入 / 即可。
  • 挂载路径:将您配置的NAS文件目录挂载到镜像的/code/stable-diffusion-webui/data-oss路径下。例如配置为:/code/stable-diffusion-webui/data-oss
  • 是否只读:开关关闭。

运行命令

运行命令中增加--data-dir 挂载目录,其中挂载目录需要与模型配置挂载路径的最后一级目录一致。例如:../webui.sh --listen --port=8000 --skip-version-check --no-hashing --no-download-sd-model --skip-install --api --filebrowser --blade --data-dir /code/stable-diffusion-webui/data-oss 


4.在最后页面单击部署

PAI会自动在您配置的NAS文件目录下创建如下目录结构,并复制必要的数据到该目录下。但是并不会覆盖已有的models目录,相反会自动识别该目录下的所有模型文件。


5.单击目标服务操作列下的>重启服务,服务重启成功后,即可生效。

PAI会自动在您配置的NAS文件目录下创建如下目录结构,并复制必要的数据到该目录下。但是并不会覆盖已有的models目录,相反会自动识别该目录下的所有模型文件。

image.png


6.后续您可以单击目标服务服务方式列下的查看Web应用,启动WebUI。在WebUI页面Stable Diffusion模型(ckpt)下拉列表中切换指定模型,进行模型推理验证。

输入如下信息:

  • 提示词:best quality, masterpiece, (best quality, masterpiece)(best quality, masterpiece), 1girl, happy, china dress, standing, looking at viewer, blurry background, earrings, hair bun, night, china town,.
  • 反向提示词:(((simple background))),monochrome ,lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, lowres, bad anatomy, bad hands, text, error, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, ugly,pregnant,vore,duplicate,morbid,mut ilated,tran nsexual, hermaphrodite,long neck,mutated hands,poorly drawn hands,poorly drawn face,mutation,deformed,blurry,bad anatomy,bad proportions,malformed limbs,extra limbs,cloned face,disfigured,gross proportions, (((missing arms))),(((missing legs))), (((extra arms))),(((extra legs))),pubic hair, plump,bad legs,error legs,username,blurry,bad feet.
  • 采样(Sampler)DPM++2MKarras
  • 相关性(CFG scale):7
  • 步数(Sampling steps):20
  • 随机种(seed):82742

模型库中也有Lora的模型文件,您可以在可选附加网络(LoRA插件)选择不同类型模型。

相关实践学习
基于ECS和NAS搭建个人网盘
本场景主要介绍如何基于ECS和NAS快速搭建个人网盘。
阿里云文件存储 NAS 使用教程
阿里云文件存储(Network Attached Storage,简称NAS)是面向阿里云ECS实例、HPC和Docker的文件存储服务,提供标准的文件访问协议,用户无需对现有应用做任何修改,即可使用具备无限容量及性能扩展、单一命名空间、多共享、高可靠和高可用等特性的分布式文件系统。 产品详情:https://www.aliyun.com/product/nas
相关文章
|
2月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
1月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
2月前
|
人工智能 运维 API
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
|
2月前
|
人工智能 算法 网络安全
基于PAI+专属网关+私网连接:构建全链路Deepseek云上私有化部署与模型调用架构
本文介绍了阿里云通过PAI+专属网关+私网连接方案,帮助企业实现DeepSeek-R1模型的私有化部署。方案解决了算力成本高、资源紧张、部署复杂和数据安全等问题,支持全链路零公网暴露及全球低延迟算力网络,最终实现技术可控、成本优化与安全可靠的AI部署路径,满足企业全球化业务需求。
|
1月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
238 11
|
3月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI一键云上零门槛部署DeepSeek-V3-0324、Qwen2.5-VL-32B
PAI-Model Gallery 集成国内外 AI 开源社区中优质的预训练模型,涵盖了 LLM、AIGC、CV、NLP 等各个领域,用户可以通过 PAI 以零代码方式实现从训练到部署再到推理的全过程,获得更快、更高效、更便捷的 AI 开发和应用体验。 现阿里云PAI-Model Gallery已同步接入DeepSeek-V3-0324、Qwen2.5-VL-32B-Instruct两大新模型,提供企业级部署方案。
|
2月前
|
人工智能 自然语言处理 运维
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
127 6
|
3月前
|
机器学习/深度学习 人工智能 边缘计算
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
|
3月前
|
机器学习/深度学习 传感器 数据采集
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
433 0

相关产品

  • 文件存储 NAS
  • 下一篇
    oss创建bucket