m基于FPGA的DQPSK调制解调通信系统verilog实现,包含testbench,不包含载波同步

简介: m基于FPGA的DQPSK调制解调通信系统verilog实现,包含testbench,不包含载波同步

1.算法仿真效果

本系统进行了两个平台的开发,分别是:

Vivado2019.2

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition

其中Vivado2019.2仿真结果如下:

c2aedc2399c056cfd0187bdbeba26d00_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

将上面的各个信号放大,各个信号含义如下:
f5f1673c015cd70bec287e0a354029c1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Quartusii18.0+ModelSim-Altera 6.6d Starter Edition的测试结果如下:

3c2f6649b9c3b9ecb4b331d0396ae5eb_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
DQPSK调制解调通信系统是一种数字通信系统,用于将数字信息转换为电信号进行传输。DQPSK代表差分四相移键控调制,是一种数字调制技术,它在发送端对数字信息进行编码,并在接收端对信号进行解码。DQPSK调制解调通信系统具有高效、可靠和抗干扰等优点,在现代通信系统中得到广泛应用。

一、DQPSK调制原理

   DQPSK调制是通过改变信号的相位来传输数字信息的调制方式。在DQPSK调制中,每个符号代表两个比特,因此,DQPSK调制器需要将两个连续的比特组合在一起来形成一个符号。DQPSK调制器使用了差分编码器来避免相位漂移问题,这是一种将相邻符号之间的相位差编码为一个比特的技术。

下面是DQPSK调制器的数学公式:

每个符号代表两个比特,因此,输入比特串b1和b2可以组成一个符号s,公式如下:
$s = \cos(\theta_1+\theta_0)$

其中,$\theta_1$是上一个符号的相位,$\theta_0$表示本次符号的相位。

DQPSK调制器需要根据上一个符号和本次符号的相位来计算相位差,公式如下:
$\Delta\theta = \arctan\left(\frac{\sin(\theta_1+\theta_0)\cos(\theta_0)-\cos(\theta_1+\theta_0)\sin(\theta_0)}{\cos(\theta_1+\theta_0)\cos(\theta_0)+\sin(\theta_1+\theta_0)\sin(\theta_0)}\right)$

最后,DQPSK调制器需要将相位差映射到相位平面上,公式如下:
$s = \cos(\theta_1+\theta_0+\Delta\theta)$

二、DQPSK解调原理

    DQPSK解调器需要根据接收到的信号来计算出相位差,然后将相位差解码为数字信息。DQPSK解调器使用低通滤波器来滤除高频噪声,并将接收到的信号分为两个时间窗口。接下来是DQPSK解调器的数学公式:

接收到的信号r可以表示为:
$r = s\cos(\theta_0)+n$

其中,$\theta_0$是本地参考信号的相位,n是接收到的噪声。

接下来,将接收到的信号r分为两个时间窗口r1和r2:
$r_1 = r_{T/2-1:0}$

$r_2 = r_{T-1:T/2}$

其中,T是一个符号的持续时间。

计算相位差,公式如下:
$\Delta\theta = \arctan\left(\frac{h\sin(2\pi fT)(r_1\cos(\theta_0)-r_2\sin(\theta_0))}{h\cos(2\pi fT)(r_2\cos(\theta_0)+r_1\sin(\theta_0))}\right)$

其中,h是低通滤波器的传递函数,f是载波频率。

最后,将相位差解码为数字信息,公式如下:
$b_1 = \Delta\theta > 0$

$b_2 = |\Delta\theta| > \pi/2$

这里,如果相位差$\Delta\theta$大于0,则将$b_1$设置为1,否则设置为0;如果相位差的绝对值大于$\pi/2$,则将$b_2$设置为1,否则设置为0。

三、DQPSK调制解调算法的实现过程

下面是DQPSK调制解调算法的实现过程:

产生本地参考信号
在DQPSK调制解调通信系统中,发送端和接收端需要使用相同频率和相位的载波信号。因此,需要在接收端产生一个本地参考信号,用于解调接收到的信号。本地参考信号可以使用一个简单的正弦波振荡器产生,公式如下:

$\theta_0(nT) = \theta_0((n-1)T) + 2\pi f_0 T$

其中,$f_0$是载波频率,$T$是一个符号的持续时间。

进行DQPSK调制
DQPSK调制器需要将两个连续的比特组合在一起来形成一个符号,然后根据上一个符号和本次符号的相位来计算相位差,最后将相位差映射到相位平面上。

3.Verilog核心程序
```module TEST();

reg i_clk;
reg i_rst;
reg i_clkSYM;
reg i_dat;

wire o_Idiff;
wire o_Qdiff;
wire signed[15:0]o_Ifir_T;
wire signed[15:0]o_Qfir_T;
wire signed[15:0]o_cos_T;
wire signed[15:0]o_sin_T;
wire signed[31:0]o_modc_T;
wire signed[31:0]o_mods_T;
wire signed[31:0]o_mod_T;

wire signed[15:0]o_cos_R;
wire signed[15:0]o_sin_R;
wire signed[31:0]o_modc_R;
wire signed[31:0]o_mods_R;
wire signed[31:0]o_Ifir_R;
wire signed[31:0]o_Qfir_R;

wire o_I;
wire o_Q;
wire o_bits;

//DQPSK调制
TDQPSK TQPSKU(
.i_clk (i_clk),
.i_rst (i_rst),
.i_clkSYM(i_clkSYM),
.i_dat (i_dat),
.o_Idiff(o_Idiff),
.o_Qdiff(o_Qdiff),

.o_Ifir (o_Ifir_T),
.o_Qfir (o_Qfir_T),
.o_cos (o_cos_T),
.o_sin (o_sin_T),
.o_modc (o_modc_T),
.o_mods (o_mods_T),
.o_mod (o_mod_T)
);

//DQPSK解调
RDQPSK RQPSKU(
.i_clk (i_clk),
.i_rst (i_rst),
.i_clkSYM(i_clkSYM),
.i_med (o_mod_T[25:10]),
.o_cos (o_cos_R),
.o_sin (o_sin_R),
.o_modc (o_modc_R),
.o_mods (o_mods_R),
.o_Ifir (o_Ifir_R),
.o_Qfir (o_Qfir_R),
.o_I(o_I),
.o_Q(o_Q),
.o_bits(o_bits)
);

initial
begin
i_clk = 1'b1;
i_clkSYM=1'b1;
i_rst = 1'b1;

#1600
i_rst = 1'b0;

end
```

相关文章
|
10天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
31 1
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
44 4
|
1月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
42 3
|
13天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
24 0
|
6月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
177 7
|
1月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
51 16
|
6月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
36 1
|
6月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
69 1

热门文章

最新文章