【改进算法】混合鲸鱼WOA和BAT算法(Matlab代码实现)

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【改进算法】混合鲸鱼WOA和BAT算法(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码及文献



💥1 概述

文献来源:


4c98f4d35cf24edbb7d2fb518a332ebe.png


㼿鲸鱼优化算法(whale optimization algorithm, WOA)是一种受自然启发的元启发式优化算法,由Mirjalili和Lewis于2016年提出。㼿这个算法已经显示出它解决许多问题的能力。对其他一些受自然启发的算法,如ABC和PSO进行了全面的调查。但是,没有对WOA进行调查搜索工作。㼿因此,本文对WOA进行了系统的meta分析调查,以帮助研究者将其应用于不同领域或与其他常用算法进行混合。本文从WOA的算法背景、特点、局限性、改进、杂交和应用等方面对WOA进行了深入介绍。接下来,提出WOA性能来解决不同的问题。㼿en,建立了WOA修饰和杂交的统计结果,并与最常用的优化算法和WOA进行了比较。㼿e调查结果表明,WOA在收敛速度和勘探与开采之间的平衡方面优于其他常用算法。与WOA相比,WOA修饰和杂化也表现良好。此外,我们的研究为提出一种混合WOA和BAT算法的新技术铺平了道路。㼿e BAT算法用于探索阶段,而WOA算法用于开发阶段。最后,从WOA- bata获得的统计结果在16个基准函数中非常具有竞争力,并且优于WOA。WOA-BAT在CEC2005的13个功能和CEC2019的7个功能上也表现出色。


原文摘要:


+e whale optimization algorithm (WOA) is a nature-inspired metaheuristic optimization algorithm, which was proposed by Mirjalili and Lewis in 2016. +is algorithm has shown its ability to solve many problems. Comprehensive surveys have been conducted about some other nature-inspired algorithms, such as ABC and PSO. Nonetheless, no survey search work has been


conducted on WOA. +erefore, in this paper, a systematic and meta-analysis survey of WOA is conducted to help researchers to use it in difffferent areas or hybridize it with other common algorithms. +us, WOA is presented in depth in terms of algorithmic backgrounds, its characteristics, limitations, modififications, hybridizations, and applications. Next, WOA performances are presented to solve difffferent problems. +en, the statistical results of WOA modififications and hybridizations are established and compared with the most common optimization algorithms and WOA. +e survey’s results indicate that WOA performs better than other common algorithms in terms of convergence speed and balancing between exploration and exploitation. WOA modififications and hybridizations also perform well compared to WOA. In addition, our investigation paves a way to present a new technique by hybridizing both WOA and BAT algorithms. +e BAT algorithm is used for the exploration phase, whereas the WOA algorithm is used for the exploitation phase. Finally, statistical results obtained from WOA-BAT are very competitive and better than WOA in 16 benchmarks functions. WOA-BAT also outperforms well in 13 functions from CEC2005 and 7 functions from CEC2019.


📚2 运行结果


5b36a9dbba5f422a96812e527aeba42f.png

54b3bd6f0c05478388cef0da37bca6d0.png


部分代码:

% WOABAT
function [Leader_score,Leader_pos,Convergence_curve]=WOABAT(SearchAgents_no,Max_iter,lb,ub,dim,fobj)
% initialize position vector and score for the leader
Leader_pos=zeros(1,dim);
Leader_score=inf; %change this to -inf for maximization problems
%Initialize the positions of search agents
Positions=initialization(SearchAgents_no,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
%bat algorithm addition
Qmin=0;         % Frequency minimum
Qmax=2;         % Frequency maximum
Q=zeros(SearchAgents_no,1);   % Frequency
v=zeros(SearchAgents_no,dim);   % Velocities
r=0.5;
A1=0.5;
t=0;% Loop counter
% summ=0;
% Main loop
while t<Max_iter
    for i=1:size(Positions,1)
        % Return back the search agents that go beyond the boundaries of the search space
        Flag4ub=Positions(i,:)>ub;
        Flag4lb=Positions(i,:)<lb;
        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        % Calculate objective function for each search agent
        fitness=fobj(Positions(i,:));
        % Update the leader
        if fitness<Leader_score % Change this to > for maximization problem
            Leader_score=fitness; % Update alpha
            Leader_pos=Positions(i,:);
        end
    end
    a=2-t*((2)/Max_iter); % a decreases linearly fron 2 to 0 in Eq. (2.3)
    % a2 linearly dicreases from -1 to -2 to calculate t in Eq. (3.12)
    a2=-1+t*((-1)/Max_iter);
    % Update the Position of search agents
    for i=1:size(Positions,1)
        r1=rand(); % r1 is a random number in [0,1]
        r2=rand(); % r2 is a random number in [0,1]
        A=2*a*r1-a;  % Eq. (2.3) in the paper
        C=2*r2;      % Eq. (2.4) in the paper
        b=1;               %  parameters in Eq. (2.5)
        l=(a2-1)*rand+1;   %  parameters in Eq. (2.5)
        p = rand();        % p in Eq. (2.6)
        for j=1:size(Positions,2)
            if p<0.5
                if abs(A)>=1
                    rand_leader_index = floor(SearchAgents_no*rand()+1);
                    X_rand = Positions(rand_leader_index, :);
                    Q(i)=Qmin+(Qmin-Qmax)*rand;
                    v(i,:)=v(i,j)+(X_rand(j)-Leader_pos(j))*Q(i);
                    z(i,:)= Positions(i,:)+ v(i,:);
                    %%%% problem
                    if rand>r
                        % The factor 0.001 limits the step sizes of random walks
                        z (i,:)=Leader_pos(j)+0.001*randn(1,dim);
                    end
                    % Evaluate new solutions
                    Fnew=fobj(z(i,:));
                    % Update if the solution improves, or not too loud
                    if (Fnew<=fitness) && (rand<A1)
                        Positions(i,:)=z(i,:);
                        fitness=Fnew;
                    end
                elseif abs(A)<1
                    Q(i)=Qmin+(Qmin-Qmax)*rand;
                    v(i,:)=v(i,j)+(Positions(i,:)-Leader_pos(j))*Q(i);
                    z(i,:)= Positions(i,:)+ v(i,:);
                    %%%% problem
                    if rand>r
                        % The factor 0.001 limits the step sizes of random walks
                        z (i,:)=Leader_pos(j)+0.001*randn(1,dim);
                    end
                    % Evaluate new solutions
                    Fnew=fobj(z(i,:));
                    % Update if the solution improves, or not too loud
                    if (Fnew<=fitness) && (rand<A1)
                        Positions(i,:)=z(i,:);
                        fitness=Fnew;
                    end
                end
            elseif p>=0.5
                distance2Leader=abs(Leader_pos(j)-Positions(i,j));
                % Eq. (2.5)
                Positions(i,j)=distance2Leader*exp(b.*l).*cos(l.*2*pi)+Leader_pos(j);
            end
        end
    end
    t=t+1;
    Convergence_curve(t)=Leader_score;
    [t Leader_score]
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。



🌈4 Matlab代码及文献

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
6天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
124 80
|
2天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
3天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
11天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
18天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
18天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
5天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
25天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
1月前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
27天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
115 15

热门文章

最新文章