【数字预失真(DPD)】静态DPD设计扩展为自适应设计及评估两种自适应DPD设计:基于(最小均方)LMS算法、使用递归预测误差方法(RPEM)算法研究(Matlab&Simulink实现)

简介: 【数字预失真(DPD)】静态DPD设计扩展为自适应设计及评估两种自适应DPD设计:基于(最小均方)LMS算法、使用递归预测误差方法(RPEM)算法研究(Matlab&Simulink实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

数字预失真(DPD)是一种基带信号处理技术,用于校正射频功率放大器(pa)固有的损伤。这些损伤导致带外发射或光谱再生和带内失真,这与误码率(BER)的增加有关。作为LTE/4G发射机的特点,具有高峰均比的宽带信号特别容易受到这些有害影响。在本文中,我们举例说明了一个建模和模拟PAs和dpd的工作流。本文所示的模型基于两篇技术论文[1]和[2]。我们从PA测量开始。从测量中,我们推导出基于内存多项式的静态DPD设计。这样的多项式校正了PA中的非线性和记忆效应。出于仿真目的,我们构建了一个系统级模型来评估DPD的有效性。由于任何PAs特性都会随时间和操作条件而变化,因此我们将静态DPD设计扩展为自适应设计。我们评估了两种自适应DPD设计,一种基于(最小均方)LMS算法,另一种使用递归预测误差方法(RPEM)算法。


详细讲解见第4部分。


📚2 运行结果


aaeba77a57f04baba51946b028c8b122.png

9360b652fa8e4116a628a687b0411481.png

7070f10260be41c293e2a6daa850af26.png

d9c0626b73284db0b3349b8295a9cf8d.png

a40217839f774cf7b3a55babcb54357a.png

8cf850f75a63457d9c2f4cd7167ff826.png

9595c0c1a78a436baa33c90bc52c1828.png

7d5b256591ea4de59023f3aa271978c2.png

b61af07895a347da9bcebfd47a3dec72.png

ea8a81ce769649cf9fe76f4221b05c26.png

acda32bc6e694e38a84fd609e7474624.png

e8cd7d4fb11a4bb784ffd4951f1bae68.png

283da8c0e77145ddb203e79ae691c9a2.png


部分代码:

%% Test data used to derive coefs
load meas_pa;
pa_in   = pa_in;
pa_out  = pa_out;
toss  = 500;             % ignore initial data that could have transients 
pad   = 600;             % room to play at the end of the data set. 
traininglen = 20e4; % Arbitrary subset of pa_in data used to derive coefs
if traininglen > (length(pa_in)-pad-toss)
    error('Pick smaller subset for traininglen');
end
%% PA and DPD model parameters
memorylen_pa    = 3; %M
degree_pa       = 3; %K
degree_pd       = 5; 
memorylen_pd    = 5; 
coef_pd=complex(zeros(degree_pd*memorylen_pd,1));
coef_pa=complex(zeros(degree_pa*memorylen_pa,1));
%% Compute input scaling factor with overrange
% and scale raw input accordingly 
u = pa_in(toss+1:(traininglen+pad)); % select data and transpose
umax_inv = 1/(max(abs(u)));   
umax_inv = 1;
u = u*umax_inv; 
v = pa_out(toss+1:(traininglen+pad)); % select data  
% Normalize output data to the maximum data. Needed
% to make numeric algorithms work. Note that this step might cause problems
% if there is outlying data OR if one does not account for this scaling.
vmax_inv = 1/(max(abs(v)));  
%vmax_inv = 1;
v = v*vmax_inv;
% In general there is no point in deriving the PA model since we
% are not implementing it. Sometimes you may only have PA
% measurements however and from those you wish to simulate the PA
% in the time domain. You can in that case derive a PA model
% but keep in mind it may not be an excellent model if you're
% PA is predominantly IIR in nature. This is true since the 
% memory polynomial assumes an FIR model. An FIR filter is great for
% equalizing the effects of an IIR filter but not necessarily great at 
% modeling it. What we have found experimentially is that if you have 
% an IIR-dominant PA, then you can model the passband quite effectively with this technique
% but the stopband may suffer particularly when there is significant
% dynamic range, i.e. a lot of attenuation in the stop band.
if 0
    offset = 0;
    up = u(1:end-offset);
    vp = v(1+offset:end);
    % Compute PA model coefficients. 
    coef_pa   = fit_memory_poly_model(up, vp, traininglen, memorylen_pa, degree_pa);   
    figure;plot([1:length(coef_pa)],real(coef_pa),'r+-',[1:length(coef_pa)],imag(coef_pa),'b+-');grid
    title('PA coefficients');
end
if 1
% Compute DPD Algorithm Coefficients using reversed I/O's
% Adding delay to the output variable (v) was crucial in using this memory
% polynomial based derivation of the DPD. We delay the output
% to compensate for the delay inherent in the PA. 
% You must take your PA's particular delay into account. The input and output 
% are reversed for the DPD derivation. v is now the input and u is the output. By setting
% vp = v(1+offset:end) we are compensating for the delay in the PA. 
% Essentially we are making it appear that the output responds to the
% input "offset" samples earlier, non-causal ish.
% You can create this effective negative delay in the DPD coefficient 
% derivation using this "offset" varible. It is not
% necessary to get the offset value perfect. There is a range of acceptable
% values for offset. You simply need to capture the energy within the M taps you're
% alloted. One informal offset calibration procedure is to observe the derived
% DPD coefficients as you change "offset" by 1. You should see the DPD coeffs
% shift by 1 as well. If you notice an uncorrelated change in the DPD coefficients 
% then you're offset value needs correction. In some cases you may also
% need to make M larger if you're PA has multiple poles you're trying to
% compensate for. Ideally, place the largest tap in the center of your
% pipeline. So if M = 5, place the largest tap at 3 using "offset" as the
% tuning parameter. This gives you some slop on both sides in case the
% PA delay were to change a little.


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Morgan, Ma, Kim, Zierdt, and Pastalan. “A Generalized Memory Polynomial Model for Digital


Predistortion of RF Power Amplifiers”. IEEE Trans. on Signal Processing, Vol. 54, No. 10, Oct.


2006


[2]Li Gan and Emad Abd-Elrady. “Digital Predistortion of Memory Polynomial Systems Using


Direct and Indirect Learning Architectures”. Institute of Signal Processing and Speech


Communication, Graz University of Technology.


[3]Saleh, A.A.M., "Frequency-independent and frequency-dependent nonlinear models of TWT


amplifiers," IEEE Trans. Communications, vol. COM-29, pp.1715-1720, November 1981


🌈4 Matlab代码实现


相关文章
|
27天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
12天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
13天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
14天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
13天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
13天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
32 3
|
24天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
25天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
30天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。

热门文章

最新文章