SSA-LSTM】基于麻雀算法优化LSTM 模型预测研究(Matlab代码实现)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: SSA-LSTM】基于麻雀算法优化LSTM 模型预测研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


1.1 麻雀搜索算法


1.2 长短期记忆神经网络


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

本研 究 利 用 麻 雀搜索算法 ( SSA) 以 提 高LSTM 模型准确度为优化目标,以 LSTM 模型中超


参数为优化对象,对 LSTM 进行优化,搭建 SSA-LSTM 神经网络模型; 将 SSA-LSTM 模型参数的预测。


1.1 麻雀搜索算法

麻雀搜索算法模拟麻雀觅食过程中行为,将种群的麻雀分为三类,一类是生产者,负责寻找食物,引导种群前往食物丰富的区域; 另一类是跟随者,在觅食的过程中它们会时刻观察着生产者,一旦发现生产者找到了更好的食物,会立刻放弃自己现在的食物,转向生产者。此外种群中还有一 定比例的警戒者,没有危险时就在种群中随意走动,一旦发现了危险就立刻向安全区域移动。在


迭代的过程中,他们按照会一定的规则进行更新位置信息。生产者:


d1a828f5ddd24fdd9de69a886d4635f9.png


如果 i 大于 n /2,则表示当前的麻雀位置不好,可能会挨饿,因此需要飞往更远的地方去觅食。如果 i 小于或等于 n /2,说明当前麻雀位置尚可,只需向位置最好的麻雀靠近即可。


984be8b3f1f64c689fac7fcd3ae53984.png


当 fi >fg 时,代表当前麻雀处于种群的边缘,极易受到攻击。当 fi = fi 时,表示处于种群中心的


麻雀意识到危险,开始向其他麻雀移动,减少被捕食的风险。


e35f786b682e436db3774b963099e386.png


LSTM 由遗忘门、输入门和输出门三部分组成。通过巧妙的结构设计( 图 3) ,很好地解决了


RNN 对于较长的时间序列状态无法传递的问题。





1.2 长短期记忆神经网络

RNN 是机器学习方法之一,主要用于处理时间序列数据。RNN 的网络结构如图 2 所示,有一


个自连接的隐藏层,它的当前状态可以依靠前一 时刻输出进行更新,因此可以解决时间序列的长


期依赖问题。 但是对于较长的时间序列,在实际 RNN 的使用过程中,会出现梯度消失和梯度爆炸的现象。为了解决以上问题,提出了 LSTM。LSTM 是基于RNN 的一种改进,它保留了 RNN 自连接的隐藏层,而且隐藏层中的节点更为复杂,可以实现较长时间序列的信息保留


📚2 运行结果





部分代码:

%% 获取优化参数
numHiddenUnits = round(x(1));%LSTM网路包含的隐藏单元数目
maxEpochs = round(x(2));%最大训练周期
InitialLearnRate = x(3);%初始学习率
L2Regularization = x(4);%L2参数
%设置网络
layers = [ ...
    sequenceInputLayer(numFeatures)
    lstmLayer(numHiddenUnits)
    fullyConnectedLayer(numResponses)
    regressionLayer];
%指定训练选项,采用cpu训练, 这里用cpu是为了保证能直接运行,如果需要gpu训练,改成gpu就行了,且保证cuda有安装
options = trainingOptions('adam', ...
    'MaxEpochs',maxEpochs, ...
    'ExecutionEnvironment' ,'cpu',...
    'InitialLearnRate',InitialLearnRate,...
    'GradientThreshold',1, ...
    'L2Regularization',L2Regularization, ...
    'Verbose',0);
%'Plots','training-progress'
%训练LSTM
net = trainNetwork(XTrain,YTrain,layers,options);
%训练集测试
PredictTrain = predict(net,XTrain, 'ExecutionEnvironment','cpu');
%测试集测试
PredictTest = predict(net,XTest, 'ExecutionEnvironment','cpu');
%训练集mse
mseTrain = mse(YTrain-PredictTrain);
%测试集mse
mseTest = mse(YTest-PredictTest);
%% 测试集准确率
fitness =mseTrain+mseTest;
disp('训练结束....')
end


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]陈玺. 基于ISSA-LSTM的超短期风电功率预测[D].宁夏大学,2022.DOI:10.27257/d.cnki.gnxhc.2022.000273.


[2]林彬彬,袁泉,田志新,潘显斌,周文宗,徐震.基于SSA- LSTM模型的黄鳝池溶氧预测研究[J].渔业现代化,2023,50(01):71-79.


🌈4 Matlab代码实现


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
4天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
101 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
2月前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
85 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
2月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)