基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM

简介: 本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a/matlab2024b

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```X = Alpx;
%bilstm
layers=bilstm_layer(bw_in,round(X(1)),round(X(2)),bw_out,X(3),X(4),X(5));

%参数设定
opts = trainingOptions('adam', ...
'MaxEpochs',10, ...
'GradientThreshold',1,...
'ExecutionEnvironment','cpu',...
'InitialLearnRate',X(6), ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',2, ...
'LearnRateDropFactor',0.5, ...
'Shuffle','once',...
'SequenceLength',1,...
'MiniBatchSize',64,...
'Verbose',1);

%网络训练
[net1,INFO] = trainNetwork(Xtrain,Ytrain,layers,opts);

Rmsev = INFO.TrainingRMSE;

figure;
plot(Rmsev)
xlabel('训练次数');
ylabel('RMSE');

%预测
for i = 1:length(Xtest)
Ypred(i) = net1.predict(Xtest(i));
end

figure
plot(Ypred,'r-')
hold on
plot(Ytest','b-')
legend('预测值','实际值')
xlabel('时间(s)')
ylabel('负荷(KW)')
rmse = mean((Ypred(:)-Ytest(:)).^2);% 计算均方根误差
title(sprintf('GWO-biLSTM分析-RMSE=%.3f', rmse));
save R3.mat Ypred Ytest rmse Rmsev

```

4.算法理论概述
在GWO算法中,灰狼被分为四类:α(领头狼)、β(第二领导者)、δ(第三领导者)以及普通狼(Ω)。在每次迭代中,这些角色对应于当前种群中适应度最好的三个解以及其余的解。通过模拟这些狼在捕食过程中的协作与竞争,算法逐步向全局最优解靠近.

1.数据预处理:对时间序列数据进行归一化处理,使其取值范围在([0,1])之间。

2.初始化种群:随机生成一组种群,每个个体代表一组网络参数。

3.计算适应度值:对于每个个体,将其对应的网络参数代入 CNN-LSTM-SAM 网络中,对训练数据进行预测,并计算预测结果与真实值之间的误差,作为该个体的适应度值。

4.更新个体信息。

5.重复步骤 3 和 4,直到满足停止条件(如达到最大迭代次数或适应度值小于某个阈值)。

6.输出最优网络参数:将全局最优位置对应的网络参数作为最优网络参数,代入BiLSTM网络中,对测试数据进行预测,得到最终的预测结果。

    在序列预测问题中,如气象数据预测、交通流量预测等,准确捕捉序列中的长期依赖关系和上下文信息是关键。双向长短期记忆网络(BiLSTM)能有效处理长序列数据,同时考虑序列的过去和未来信息,但BiLSTM的性能受其参数设置的影响较大。粒子群优化算法(PSO)是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。将PSO应用于BiLSTM的参数优化,可以提高BiLSTM的序列预测性能。

   LSTM是一种特殊的循环神经网络(RNN),旨在解决传统RNN在处理长序列时的梯度消失和梯度爆炸问题,从而更好地捕捉长序列中的长期依赖关系。其核心结构包含输入门、遗忘门、输出门以及记忆单元。

   BiLSTM 是在LSTM基础上发展而来,它通过同时向前和向后处理序列,能够更好地捕捉序列中的前后文信息,从而在序列预测任务中表现更优。BiLSTM由一个前向LSTM和一个后向LSTM 组成。

image.png

相关文章
|
6月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
327 0
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
5月前
|
机器学习/深度学习 数据采集 边缘计算
相关向量机和特征选取技术在短期负荷预测中的应用(Matlab代码实现)
相关向量机和特征选取技术在短期负荷预测中的应用(Matlab代码实现)
108 4
|
6月前
|
机器学习/深度学习 调度 Python
【电力系统】基于 Sobol 低差异序列的光伏不确定性-电压稳定联合评估研究(Matlab代码实现)
【电力系统】基于 Sobol 低差异序列的光伏不确定性-电压稳定联合评估研究(Matlab代码实现)
171 4
|
5月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
142 0
|
5月前
|
算法 安全 数据挖掘
【EI复现】梯级水光互补系统最大化可消纳电量期望短期优化调度模型(Matlab代码实现)
【EI复现】梯级水光互补系统最大化可消纳电量期望短期优化调度模型(Matlab代码实现)
156 0
|
5月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
852 0
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
319 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
254 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章