【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)

简介: 【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)

💥1 概述

随着社会的高速发展,精准的短期电力负荷预测越来越重要。短期电力负荷的准确预测不仅对电网规划和电力系统安全经济运行有不可替代的作用,而且对减少发电成本、提高用电质量和市场规划等方面也有重要作用。短期电力负荷预测是指对未来几小时或几天的负荷进行预测。电力负荷的变化规律因受到气象、节假日等多种因素的影响,导致负荷的随机性和波动性较大,并且需要输入的模型参数较多,使用传统的预测方法难以胜任。


1.1 LSTM神经网络算法

LSTM 作为 RNN 的一种特殊形式,为了解决RNN 梯度爆炸的问题[11] ,首先由 Hochreiter 等在


1997年提出,如今在时间序列数据的预测应用十分广泛。


网络结构参数,是在训练过程中通过损失函数反馈后进行调整的参数。在LSTM网络中需要调整的网络结构参数,即权重矩阵和偏置矩阵,主要存在于遗忘门ft、输入门it和输出门ot三个门控单元中。LSTM的结构如图1所示,与普通的RNN相比,LSTM的结构更加复杂,它将RNN中每个神经元的单层网格换成了四层网格。图中的σ和tanh分别代表Sigmoid函数和Tanh函数,起到闸门的作用,它们决定着上一时刻的负荷信息向前传递时所占的比重。激活函数的值越接近1,上一时刻的负荷信息向前传递得越多;激活函数越接近0,上一时刻的负荷信息向前传递越少。


LSTM 网络主要由三个门控单元控制,细胞状态Ct相当于信息传输的路径,通过Sigmoid函数和


Tanh函数控制当前输入的电力信息和细胞记忆中电力信息的选择与丢弃。在 t 时刻,细胞单元(当


前神经元)的输入包括当前时刻输入变量 Xt、前一时刻隐藏层状态变量ht-1和前一时刻细胞单元状态变量Ct-1。依次经过ft、it和ot之后,细胞单元的输出包括当前时刻输出变量 ht和当前时刻细胞单元状态变量Ct。


各个门控单元通过计算初始权重和偏置矩阵得到它们所需负荷信息的占比,再根据损失函数调

整得到最优的权重矩阵和偏置矩阵,得到最终的负荷信息占比。


1.2 PSO算法

由于电力负荷的历史数据是一个时间序列数据,LSTM模型在时间序列的分析中表现优异。而 LSTM算法中的超参数对负荷预测的准确性有很大的影响。本文用PSO对LSTM的超参数进行寻优,并在负荷预测时更新其相应的数值。PSO 算法是模拟大自然鸟群觅食行为得出的一种全局寻优算法。将全局中的每一个可能都看作一个粒子,每个粒子都有不同的运动方向和速度,朝着最优位置前进。通过更新个体最优位置和全局最优位置,得到目标函数的最优解,从而实现全局寻优[12] 。本文把PSO与LSTM算法相结合,构建了PSO-LSTM预测模型。


1.3 PSO-LSTM负荷预测模型

本文将 PSO 与 LSTM 神经网络结合的方法是把LSTM的三个关键超参数(神经元数量L1,学习率


ε和训练迭代次数k)作为PSO粒子的寻优变量,通过更新粒子的速度和位置,从而使负荷预测的适应度值达到最低,获得更优的模型参数。PSO 优化LSTM模型参数的流程图如图2所示。


📚2 运行结果

2.1 LSTM

2.2 PSO优化

迭代次数可以修改:

2.3 PSO-LSTM

2.4 实际值、LSTM、PSO-LSTM比较


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]王晓辉,邓威威,齐旺.基于PSO-LSTM的电力负荷预测模型[J].上海节能,2022(02):164-169.DOI:10.13770/j.cnki.issn2095-705x.2022.02.007.


[2]刘博. 基于PSO-LSTM算法的短期电力负荷预测应用研究[D].吉林大学,2020.DOI:10.27162/d.cnki.gjlin.2020.003369.


[3]魏腾飞,潘庭龙.基于改进PSO优化LSTM网络的短期电力负荷预测[J].系统仿真学报,2021,33(08):1866-1874.DOI:10.16182/j.issn1004731x.joss.20-0297.


🌈4 Python代码、数据、文章讲解

相关文章
|
13天前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
215 1
|
14天前
|
算法 数据挖掘 区块链
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
基于遗传算法的多式联运车辆路径网络优优化研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
17天前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
|
25天前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
150 0
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
203 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM

热门文章

最新文章