基于蒙特卡洛法的规模化电动汽车充电负荷预测(Python&Matlab实现)

简介: 目录0 概述1 蒙特卡洛模拟方法介绍2 规模化电动汽车充电负荷预测计算方法3 完整代码

0 概述

对于本文的研究,依据不同用途电动汽车影响因素的分布函数和设定参数,采用蒙特卡洛法,对各用途电动汽车的日行驶里程、起始充电时间概率分布参数进行随机抽样,计算初始荷电状态和和充电所需时长,进而预测得出各类型的电动汽车充电负荷曲线,最后通过叠加各用途电动汽车的充电负荷曲线得出总的充电负荷曲线。


1 蒙特卡洛模拟方法介绍

计算机模拟中的蒙特卡洛法也被称为随机抽样技术或统计检验方法,该方法最重要的特点是它是一种基于概率统计理论的方法。随着科学技术的发展和电子计算机的发明,蒙特卡洛法以其描述物理发展特点和物理实验过程的优点,在各个领域得到了广泛的应用。


2 规模化电动汽车充电负荷预测计算方法

根据对各用途电动汽车的充电影响因素进行研究得出了基本参数,包括充电时段起始充电容量分布和起始时间分布等,如表1所示。


2aedabd97bdf62028ef880465e203d25.png

8852c5529fcddf73776ae5ae89ccc1da.png



该表给出了各用途电动汽车在建立充电负荷预测计算时需要的参数:

电动公交车一般进行常规充电,日行驶里程数和起始充电时间服从均匀分布;

电动出租车一般进行快速充电,日行驶里程数服从均匀分布,起始充电时间服从正态随机分布;

电动私家车进行常规充电和快速充电两种补给电能方式,日行驶里程数服从指数分布,起始充电时间服从正态随机分布。在常规充电和快速充电时,不同类型电动汽车的充电功率不尽相同,电动公交车的充电功率近似为电动私家车的五倍,电动出租车的充电功率近似为电动私家车的两倍。

经过原理及模型研究,假定各用途电动汽车均处于无序充电的状态,具体的计算方法如下:

(1)根据预测出的北京市各用途电动汽车的保有量,确定电动汽车的市场规模如表2所示。


da5ac7b04f2a49d1a97d20d6bd459cbc.png


编辑

(2)依据不同用途电动汽车影响因素的分布函数和设定参数,如表1所示,采用蒙特卡洛模拟方法进行仿真,随机抽取日期类型、电动汽车起始充电时间和日行驶里程。

(3)计算车辆的初始荷电状态和充电所需时长。电动汽车动力电池的剩余电量直接关系到电动汽车的充电所需时间。对于电动汽车的充电所需时间,文章运用电动汽车动力电池的荷电状态( state of charge,SOC)来进行计算。假设电池消耗电量与行驶距离成正比,


1125378ba317ae10a7b4f257307a2cf4.gif


编辑为已行驶距离,


9ad4f7d47d313e7edc55a0b69a4cc991.gif


编辑为电动模式下最大续航里程。此处假定每种不同用途的电动汽车每公里的耗电量相同,最后一次出行结束时的剩余电量由下式计算所得:


9091b3c24a09aeba8306070360db61ed.png


式中SOC1为完成充电时的电池荷电状态,SOC2为上一次完成充电时的电池荷电状态。

计算电动汽车充电所需时间T,可以通过将电池容量C、起始荷电状态SOC和充电功率Р求

得,具体公式如下:


ab250bfe7ca02be9c3862cc794ec2f6a.png


(4)计算某一种用途电动汽车在第i个充电负荷计算点时的总充电负荷。本文将每天计算为1440分钟,每15分钟计算一次充电负荷,共计96个充电负荷计算点,计算预测北京市各用途的电动汽车充电负荷,得到各用途电动汽车充电负荷。某一种用途电动汽车的充电负荷的预测计算方法如下:


c76852ffcbf04fe0a8c832b09b965475.png


其中


1a2466b26764422f1327b264a2fc142f.gif


编辑表示第n 台某一种用途电动汽车结束充电的时刻,


46d9a701b940ce09c13f46fc5c88bff0.gif


编辑表示第n台某种用途电动汽车开始充电的时刻,T表示第n台某种用途电动汽车充电所需时间。某一种用途电动汽车在第 i个充电负荷计算点时的总充电负荷


8bf7153635784403bbfe15bb82432074.gif


可由以下方法计算得到


f6379c3034619d94fb3974a134a8c201.png


ba25378dadf266468f34a8be8ae6edef.gif


表示第n台电动汽车在第i个充电负荷计算点时的充电负荷,N表示某一种用途电动汽车的保有量。


(5)通过叠加各用途电动汽车的充电负荷得到总的电动汽车充电负荷。第i个充电负荷计算点的总电动汽车充电负荷的计算方式如公式(4-6)所示:


638504f47ee61872cd9d3dce2c5ead8a.png


式中,Nc,Nt,Nb分别表示在i时刻充电的电动私家车、电动出租车、电动公交车的数量;


2e280e88ed779ff4afdef4c7c8f285d6.gif


,


eaecf1819cf43579eea93198fa67b08f.gif


,


0575c645d46fd4bd179e48374890dcfd.gif


分别表示在i时刻电动私家车、电动出租车、电动公交车的充电负荷大小。


3 完整代码


bc9f63cdb82f19c011346388e3b65232.png


13d9c697a95670f6b8faa5f1a4a93907.png

相关文章
|
2月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
157 73
|
27天前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
18天前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
22天前
|
算法 数据可视化 Python
使用 Python 模拟蒙特卡洛实验
使用 Python 模拟蒙特卡洛实验
30 1
|
19天前
|
Python
基于python-django的matlab护照识别网站系统
基于python-django的matlab护照识别网站系统
13 0
|
6月前
|
机器学习/深度学习 数据采集 数据可视化
Python中实现类似MATLAB的常用技巧
Python中实现类似MATLAB的常用技巧
|
3月前
|
Python
【Python】实现MATLAB中计算两个矩形相交面积的rectint函数
Python中实现MATLAB中rectint函数的方法,该函数用于计算两个矩形相交区域的面积,并通过定义Rectangle类和calc_area函数展示了如何计算两个矩形的交集面积。
44 1
|
4月前
|
机器学习/深度学习 数据采集 分布式计算
LabVIEW、Matlab与Python的比较:从多角度详解三大编程工具
LabVIEW、Matlab与Python的比较:从多角度详解三大编程工具
92 1
|
4月前
|
调度
基于蒙特卡洛的电力系统可靠性分析matlab仿真,对比EDNS和LOLP
电力系统可靠性评估研究,聚焦于LOLP(电力不足概率)和EDNS(期望缺供电量)的模拟分析。使用MATLAB2022a进行基于蒙特卡洛的仿真,模拟单线及多线故障,分析连锁效应。程序中通过随机断开线路,计算潮流,判断越限并用PSO优化。结果显示,LOLP和EDNS增加时,故障概率降低,但小概率大影响事件概率上升。以IEEE24-RTS系统为案例,考虑元件失效的马尔科夫过程,不考虑3个及以上元件失效情况,因为可能导致系统大规模崩溃。仿真步骤包括随机线路断开、故障分析和稳定性评估,涉及信息节点概率计算、潮流计算及优化决策。
|
5月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
101 6