【MATLAB第53期】基于MATLAB的TSK模糊神经网络时间序列预测模型,含短期预测未来功能

简介: 基于matlab的模糊神经网络时间序列预测模型,支持一列数据时间序列预测,含短期预测未来功能。后台私信回复“53期”即可获取下载链接。

【MATLAB第53期】基于MATLAB的TSK模糊神经网络时间序列预测模型,含短期预测未来功能

一、效果展示

2023-07-09_154252.png
2023-07-09_154323.png

二、数据设置

  1. 数据采用一列数据
    滑动窗口设置为5 ,可自行设置
    70%训练
    30%测试
    预测未来值为10 ,可自行设置,控制10以内

三、模型参数

nRules = 1;%模糊推理规则的数量
velocity = 2;%学习速度[0,velocity]之间二进制搜索
nEpochs = 1; %运行次数
AI 代码解读
评价指标:


   error = desired - output;% 相对误差
   ESS = sum(error(1:n).^2);%误差平方和
    SigmaM = sqrt(var(error(1:n)));%误差方差
    DW = sum(diff(error(1:n)) .^ 2) / sum(error(1:n) .^ 2);%达宾-沃森值
    R2 = 1 - ESS / sum((desired(1:n) - mean(desired(1:n))) .^ 2);%决定系数
        MAPE = mean(abs(error(n+1:end)) ./ abs(desired(n+1:end))) * 100;%mape
    SigmaF = sqrt(var(error(n+1:end)));%误差方差
    Tale = %泰尔系数


# 四、代码展示
```js
clear all
load data %导入数据   一列数据 
tskData=data; %数据命名为tskData 
acf = autocorr(tskData, length(tskData)-1);% 自相关
pacf = parcorr(tskData, length(tskData)-1);%偏自相关


    figure();% 偏自相关绘图
    grid on    
    bar(pacf);
    title('偏自相关');
    xlabel('Lag');
    ylabel('Autocorrelation');


    figure();% 自相关绘图
    grid on    
    bar(acf);
    title('自相关');
    xlabel('Lag');
    ylabel('Autocorrelation');

    nInputs =5;%滑动窗口数量 
    nRules = 1;%模糊推理规则的数量
    velocity = 2;%学习速度[0,velocity]之间二进制搜索

    nEpochs = 1; %运行次数
    nLearnSamples =0.7;% 训练样本数量比例
    nSamples = length(tskData) - nInputs; %样本数量
    learnPercent = 70;%训练比例
       testPercent = 100 - learnPercent;%测试比例

    Fn = 10;%预测未来数量 ,只支持短期预测。 如10以内


%滑动窗口处理
       sample = zeros(nSamples, nInputs);
    for i = 1:nSamples
        sample(i,:) = tskData(i:i+nInputs-1);
    end
AI 代码解读

五、代码获取

后台私信回复“53期”即可获取下载链接。

目录
打赏
0
0
0
0
267
分享
相关文章
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
137 9
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
131 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
273 1
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
121 0
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
147 4
【传知代码】图神经网络长对话理解-论文复现

热门文章

最新文章