【MATLAB第13期】基于LSTM长短期记忆网络的多输入单输出滑动窗口回归预测模型

简介: 【MATLAB第13期】基于LSTM长短期记忆网络的多输入单输出滑动窗口回归预测模型

【MATLAB第13期】基于LSTM长短期记忆网络的多输入单输出滑动窗口回归预测模型


一、实现效果


往期文章提到了对单列时间序列数据进行滑动窗口处理的思路,本文介绍如何对多输入单输出数据进行滑动窗口的思路。实现效果如下:


训练过程

测试集拟合效果


二、数据设置:


198行(代表198天),21列数据,其中前20列为变量,第21列为因变量。

前80%数据训练,后20%数据测试


三、滑动窗口处理:


滑动窗口尺寸为7,即可认为前7天的变量作为输入,第7天的因变量作为输出。

则输入的一组样本矩阵结构由20×1变成 20×7而样本数量也从原来的198变为192 ,因为前6组变量数据作为了历史样本

输入数据样本 20198

转变后 192
20*7

四、评价指标:


RMSE = 1.1891

MAPE = 0.05319


五、部分代码:


%% LSTM 多变量单输入滑动窗口处理
clear all;
clc;
close all;
load data
% 数据处理
% 归一化(全部特征 均归一化)
output_data =data(:,end);
input_data =data(:,1:end-1);
[input_normdata,input_normopt] =mapminmax(input_data',0,1);
[output_normdata,output_normopt] = mapminmax(output_data',0,1);
k =7;          %滑动窗口处理                                                    
% 划分数据集
n = floor(0.8*size(input_normdatacell,1));%训练集,测试集样本数目划分
% LSTM 层设置,参数设置
numhidden_units1=100;
% lstm
layers = [ ...
    sequenceInputLayer(inputSize,'name','input')                             %输入层设置
 lstmLayer(numhidden_units1)                     %学习层设置
     fullyConnectedLayer(outputSize,'name','fullconnect')                     %全连接层设置(outputsize:预测值的特征维度)
    regressionLayer('name','out')];                                          %回归层
% trainoption
opts = trainingOptions('adam', ...        %优化算法
    'MaxEpochs',10, ...                   %遍历样本最大循环数
    'GradientThreshold',1,...             %梯度阈值
    'ExecutionEnvironment','cpu',...      %运算环境
    'InitialLearnRate',0.001, ...         %初始学习率
    'Plots','training-progress'...        % 打印训练进度
    );
% 网络训练
tic
net = trainNetwork(input_xtraincell,output_ytraincell,layers,opts);      %网络训练
% 预测
                                                               %预测天数                                    
yprenorm = net.predict(input_xtestcell);   %预测
ypre = mapminmax('reverse',yprenorm',output_normopt);          %预测值反归一化
yytest = mapminmax('reverse',output_ytestcell',output_normopt); 
RMSE  = sqrt(mean((ypre-yytest).^2));
MAPE  = mean((ypre-yytest)./yytest);
disp(["RMSE2  ",RMSE ])
disp(["MAPE2 ", MAPE])

六、获取方式:


后台回复‘回归滑动窗口’,即可获取下载链接。


相关文章
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
270 4
|
4月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
8月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
5月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
5月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
223 2
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
122 6

热门文章

最新文章