【MATLAB第13期】基于LSTM长短期记忆网络的多输入单输出滑动窗口回归预测模型

简介: 【MATLAB第13期】基于LSTM长短期记忆网络的多输入单输出滑动窗口回归预测模型

【MATLAB第13期】基于LSTM长短期记忆网络的多输入单输出滑动窗口回归预测模型


一、实现效果


往期文章提到了对单列时间序列数据进行滑动窗口处理的思路,本文介绍如何对多输入单输出数据进行滑动窗口的思路。实现效果如下:


训练过程

测试集拟合效果


二、数据设置:


198行(代表198天),21列数据,其中前20列为变量,第21列为因变量。

前80%数据训练,后20%数据测试


三、滑动窗口处理:


滑动窗口尺寸为7,即可认为前7天的变量作为输入,第7天的因变量作为输出。

则输入的一组样本矩阵结构由20×1变成 20×7而样本数量也从原来的198变为192 ,因为前6组变量数据作为了历史样本

输入数据样本 20198

转变后 192
20*7

四、评价指标:


RMSE = 1.1891

MAPE = 0.05319


五、部分代码:


%% LSTM 多变量单输入滑动窗口处理
clear all;
clc;
close all;
load data
% 数据处理
% 归一化(全部特征 均归一化)
output_data =data(:,end);
input_data =data(:,1:end-1);
[input_normdata,input_normopt] =mapminmax(input_data',0,1);
[output_normdata,output_normopt] = mapminmax(output_data',0,1);
k =7;          %滑动窗口处理                                                    
% 划分数据集
n = floor(0.8*size(input_normdatacell,1));%训练集,测试集样本数目划分
% LSTM 层设置,参数设置
numhidden_units1=100;
% lstm
layers = [ ...
    sequenceInputLayer(inputSize,'name','input')                             %输入层设置
 lstmLayer(numhidden_units1)                     %学习层设置
     fullyConnectedLayer(outputSize,'name','fullconnect')                     %全连接层设置(outputsize:预测值的特征维度)
    regressionLayer('name','out')];                                          %回归层
% trainoption
opts = trainingOptions('adam', ...        %优化算法
    'MaxEpochs',10, ...                   %遍历样本最大循环数
    'GradientThreshold',1,...             %梯度阈值
    'ExecutionEnvironment','cpu',...      %运算环境
    'InitialLearnRate',0.001, ...         %初始学习率
    'Plots','training-progress'...        % 打印训练进度
    );
% 网络训练
tic
net = trainNetwork(input_xtraincell,output_ytraincell,layers,opts);      %网络训练
% 预测
                                                               %预测天数                                    
yprenorm = net.predict(input_xtestcell);   %预测
ypre = mapminmax('reverse',yprenorm',output_normopt);          %预测值反归一化
yytest = mapminmax('reverse',output_ytestcell',output_normopt); 
RMSE  = sqrt(mean((ypre-yytest).^2));
MAPE  = mean((ypre-yytest)./yytest);
disp(["RMSE2  ",RMSE ])
disp(["MAPE2 ", MAPE])

六、获取方式:


后台回复‘回归滑动窗口’,即可获取下载链接。


目录
打赏
0
0
0
1
266
分享
相关文章
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
90 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
210 10
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。

热门文章

最新文章