数值分析算法 MATLAB 实践 线性方程组迭代法

简介: 数值分析算法 MATLAB 实践 线性方程组迭代法

数值分析算法 MATLAB 实践 线性方程组迭代法

Jacobi迭代法

雅可比迭代法保证收敛的条件是矩阵A(Ax=b)为严格的行对角占优矩阵,对于每一行,对角线上的元素之绝对值大于其余元素绝对值的和。需要说明的是:即使不满足此条件,雅可比法有时仍可以收敛。

在这里插入图片描述

%% 雅可比迭代法 [x,k,index] = Jacobimethod(A,b,ep)
% A为方程组的系数矩阵;
% b为方程组的右端项;
% ep为精度要求,缺省值为1e-5;
% it_max为最大迭代次数,缺省值为100;
% x为方程组的解;
% k为迭代次数;
% index为指标变量,index=0表示迭代失败,index=1表示收敛到指定要求
A = [10 3 1; 2 -10 3 ;1 3 10];
b = [14 -5 14 ]'; %b = [14; -5; 14 ];
eps = 0.005;
[x_0,k0_cnt,index] = Jacobimethod(A,b,eps);
disp('迭代次数:k0_cnt=')
disp(k0_cnt)
disp(['方程组的解:x_0 = '])
disp(x_0)

%% 求线性方程组的Jacobi迭代法,调用格式为[x, k] = JacobiFunc(A,b,x0,eps,it_max)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,eps 为精度要求,默认为1e-6,x0迭代初始值
%  it_max 为最大迭代次数,默认为1000
%  x 为线性方程组的解,k迭代次数
x0=[0,0,0]';%[x1;x2;x3]列向量
it_max = 1000;eps=1e-6;
[x1, k1_cnt] = JacobiFunc(A,b,x0,eps,it_max);
disp('迭代次数:k1_cnt=');
disp(k1_cnt)
disp(['方程组的解:x1 = ']);
disp(x1)

 %% [x,k]=JacobiFunmethod(A,b,x0,N,emg)
 % A:线性方程组左端矩阵,b:线性方程组右端向量,x0:迭代初值
 % N:迭代次数上界,若迭代次数大于n,则迭代失败, emg:精度指标
 % k:迭代次数,
 % x:用迭代法求得的线性方程组的近似解
x0=[0,0,0]';%[x1;x2;x3]列向量
it_max = 1000;eps=1e-6;
[x2,k2_cnt]=JacobiFunmethod(A,b,x0,it_max,eps);
disp('迭代次数:k2_cnt=');
disp(k2_cnt)
disp(['方程组的解:x2 = ']);
disp(x2)
function [x,k] = JacobiFunc(A,b,x0,eps,it_max)
%  求线性方程组的Jacobi迭代法,调用格式为[x, k] = JacobiFunc(A,b,x0,eps,it_max)
%  其中, A 为线性方程组的系数矩阵,b 为常数项,eps 为精度要求,默认为1e-6,x0迭代初始值
%  it_max 为最大迭代次数,默认为200
%  x 为线性方程组的解,k迭代次数
  if nargin == 3
      eps = 1.0e-6;
      M = 200;
  elseif nargin<3
      disp('输入参数数目不足3个');
      return
  elseif nargin ==5
      M = it_max;
  end
  D = diag(diag(A));%求A的对角矩阵
  L = -tril(A,-1);%求A的下三角矩阵
  U = -triu(A,1);%求A的上三角矩阵
  B = D\(L+U);
  f = D\b;
  x = B*x0+f;
  k = 1;%迭代次数
  while norm(x-x0)>=eps
      x0 = x;
      x = B*x0+f;
      k = k+1;
      if(k>=M)
          disp('Warning:迭代次数太多,可能不收敛!');
          return;
      end
  end
end
function [ x,k,index]=Jacobimethod(A,b,ep,it_max)
% 求线性方程组的雅可比迭代法,其中,
% A为方程组的系数矩阵;
% b为方程组的右端项;
% ep为精度要求,缺省值为1e-5;
% it_max为最大迭代次数,缺省值为100;
% x为方程组的解;
% k为迭代次数;
% index为指标变量,index=0表示迭代失败,index=1表示收敛到指定要求,
    [n,m] = size(A);nb = length(b);
%当方程组行与列的维数不相等时,停止计算,并输出出错信息。
    if n ~=m
            error('The rows and columns of matrix A must be equal! ');
            return;
    end
    % 当方程组与右端项的维数不匹配时,停止计算,并输出出错信息。
    if m~=nb
            error ('The columns of A must be equal the length of b! ');
            return;
    end

    if nargin<4
        it_max =100;
    end
    if nargin<3 
        ep = 1e-5;
    end

    k=0;x = zeros (n,1);y=zeros (n,1);index=1;
    while 1
        for i=1 :n
                y(i) =b(i) ;
                for j=1:n
                    if j~=i
                            y(i) =y(i) -A(i,j)*x(j);
                    end
                end
       if abs(A(i,i))<1e-10  &&k==it_max       % abs绝对值函数
                    index =0 ;return;
                end
                y(i) =y(i)/A(i,i);
        end
        k = k +1;
        if norm(y-x,inf) <ep
            break;
        end
        x = y;
end
function [x,k]=JacobiFunmethod(A,b,x0,N,emg)
 % A:线性方程组左端矩阵,b:线性方程组右端向量,x0:迭代初值
 % N:迭代次数上界,若迭代次数大于n,则迭代失败, emg:精度指标
 % k:迭代次数,
 % x:用迭代法求得的线性方程组的近似解
     n=length(A);      
     x=zeros(n,1); %设置变量
     X=zeros(n,1); % X
     x=x0; k=0; 
     r=max(abs(b-A*x));
     while (r>emg)          % 迭代循环过程
       for i=1:n
           sum=0;
           for j=1:n
                if i~=j
                 sum=sum+A(i,j)*x(j);
                end
           end
           X(i)=(b(i)-sum)/A(i,i);
       end
       r=max(abs(X-x)); 
       x=X; 
       k=k+1;
       if k>N
          disp('迭代失败,返回');
          return;
       end
end
目录
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
105 80
|
20天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
115 30
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
15天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
15天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
1天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。

热门文章

最新文章