Pytorch全连接神经网络实现手写数字识别

简介: Pytorch全连接神经网络实现手写数字识别

问题

Mnist手写数字识别数据集作为一个常见数据集,包含10个类别,在此次深度学习的过程中,我们通过pytorch提供的库函数,运用全连接神经网络实现手写数字的识别


方法

设置参数

input_size = 784
hidden_size = 500
output_size = 10
num_epochs = 5
batch_size = 100
l2earning_rate = 0.001

下载mnist数据集,并将其分为训练集和测试集

定义一个带有隐藏层的全连接神经网络

class NeuralNet(nn.Module):
    def__init__(self,input_size,hidden_size,output_size):
       super(NeuralNet, self).__init__()
       self.fc1 = nn.Linear(input_size, hidden_size)
       self.relu = nn.ReLU()
       self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
    out = self.fc1(x)
    out = self.relu(out)
    out = self.fc2(out)
    return out
model=NeuralNet(input_size,hidden_size,output_size).to(device)   #类的实例化

损失函数和优化算法

训练模型

total_step = len(train_loader)  #训练数据的大小,也就是含有多少个barch
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):  
       images = images.reshape(-1, 28*28).to(device)    
       labels = labels.to(device)
       outputs = model(images)
       loss = criterion(outputs, labels)
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()
       if (i+1) % 100 == 0:
           print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
                  .format(epoch+1, num_epochs, i+1, total_step, loss.item()))

测试模型

实验结果


结语

通过此次试验发现,在训练数据时,传入网络的是一个独立标签,即,我们希望输出的是2,但输出的不是用实数2做标签,而是用一个表示实数2的一个十维向量[0,0,1,0,0,0,0,0,0,0],对于分类问题,这种表示尤为重要。

目录
相关文章
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
339 1
|
4天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
204 59
|
3月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
【PyTorch】PyTorch深度学习框架实战(一):实现你的第一个DNN网络
191 1
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
83 1
|
4月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
57 0
|
6天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
43 17
|
16天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。