m基于MOEA算法的无线传感器网络最优部署matlab仿真

简介: m基于MOEA算法的无线传感器网络最优部署matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

9756c24fef15ef4abd5549c943441f7d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c7254ae69b6fa51be15ba5e3b003fcbd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
cc902c9251fc6818eaedcdf904a142b7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
3ca12def075f67440e785db35377d429_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
无线传感器网络(Wireless Sensor Network,WSN)是一种分布式传感器网络,由大量的无线传感器节点组成,它们可以自组织、自适应、自愈合,通过无线通信协同完成任务。WSN应用广泛,如环境监测、农业、医疗等领域。在WSN中,传感器节点的部署是影响网络性能的重要因素。传感器节点部署不合理,会导致网络覆盖不足、能量消耗不均衡等问题。因此,如何实现WSN的最优部署成为WSN领域的研究热点之一。

  MOEA(Multi-Objective Evolutionary Algorithm,多目标进化算法)是一种通过模拟自然进化过程来求解多目标优化问题的算法。MOEA算法具有全局寻优能力、非线性和非凸性问题求解能力、可并行化等特点,已被广泛应用于WSN最优部署问题的求解。一、 无线传感器网络最优部署的问题描述

   WSN最优部署问题是指在给定的区域内,如何部署有限数量的传感器节点,以实现最优网络覆盖和最小能量消耗。WSN最优部署问题可以看作是一个多目标优化问题,其中目标函数通常包括以下两个方面:

覆盖率
覆盖率是指传感器节点覆盖目标区域的能力。在WSN中,覆盖率通常指覆盖目标区域的百分比或者传感器节点的密度,即在目标区域中布置的传感器节点数量与目标区域面积之比。覆盖率越高,网络的监测、控制和管理能力就越强。

能量消耗
能量消耗是指传感器节点在运行过程中所消耗的能量。在WSN中,传感器节点的能量是有限的,因此需要尽可能地降低能量消耗,以延长网络的寿命。能量消耗通常与传感器节点的通信距离、传输功率、数据传输速率等因素相关。因此,在部署传感器节点时,需要考虑如何降低传感器节点之间的通信距离和传输功率,以降低能量消耗。

 综上所述,WSN最优部署问题可以看作是一个多目标优化问题,其中目标函数包括覆盖率和能量消耗。最优部署问题的解决将帮助WSN实现高效、可靠和持久的监测和控制功能。

二、 MOEA算法的原理

  MOEA算法是一种通过模拟自然进化过程来求解多目标优化问题的算法。MOEA的基本思想是将多目标优化问题转化为一个多目标决策问题,通过不断地对候选解进行进化操作,生成一组具有多个目标函数的最优解集合。MOEA算法的基本流程如下:

初始化种群
首先,需要确定问题的决策变量和目标函数。在WSN最优部署问题中,决策变量是传感器节点的部署位置和数量,目标函数是覆盖率和能量消耗。接着,需要随机生成一组初始种群,每个个体表示一种传感器节点的部署方案。

评估个体适应度
对于每个个体,需要评估其适应度。在WSN最优部署问题中,可以使用覆盖率和能量消耗作为个体的适应度。覆盖率越高的个体适应度越高,能量消耗越低的个体适应度越高。

选择个体
在MOEA算法中,选择个体的方法通常是基于多目标优化的非劣解排序(Non-dominated Sorting,NSGA)方法。NSGA方法通过将个体根据其适应度分成不同的层级,每个层级的个体均优于当前层级下的所有个体。在每个层级中,根据拥挤度排序(Crowding Distance Sorting)方法,选择一定数量的个体作为下一代种群的父代。

进化操作
进化操作包括交叉、变异和选择。交叉是指将两个个体的某些部分进行交换,产生新的个体。变异是指对个体的某些部分进行随机变换,产生新的个体。选择是指从父代和后代中选择一定数量的个体作为下一代种群。

3.MATLAB核心程序

nn       = 2*(N+M);
Num      = 3;  
Xmax     = [W*ones(1,nn)];
Xmin     = [1*ones(1,nn)];

%种群大小   
pop      = 100;          
lamdaMat = generateLamda(pop,Num); 
%邻居规模大小
T        = 4;          
Maxgen   = 1000;

%初始化邻居
B        = getNeighbor(lamdaMat,T);
%初始化个体位置
X = repmat(Xmin,pop,1)+rand(pop,nn).*repmat(Xmax-Xmin,pop,1); 
for i=1:pop
    [fitness,f1,f2,f3] = func_obj(X(i,:));
    fit(i,:)  = fitness;
    fit2(i)   = sum(fitness);
end

[V,I] = max(fit2);

z0    = fit(I,:);
X0    = X(I,:);
z     = z0;

tic;
%迭代循环
for gen =1:Maxgen
    gen
    for i = 1:pop   
        %繁殖
        index = randperm(T);
        r1    = B(i,index(1));
        r2    = B(i,index(2));
        y     = geneticOp( X(r1,:), X(r2,:),Xmax,Xmin);
        %Improvement
        y     = CheckBound(y,Xmax,Xmin);

        [fity,f1,f2,f3] = func_obj(y);
        for j=1:Num
             z(j) = min(z(j),fity(j));
        end
        %Update of neighboring solution   

        [X,fit] = updateNeigh(X,fit,B(i,:),y,z);
    end
    errss(gen)  = mean(fit(:,1)+fit(:,2)+fit(:,3))/3;
相关文章
|
1月前
|
传感器 算法 C语言
基于无线传感器网络的节点分簇算法matlab仿真
该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。
|
2月前
|
算法 5G 数据安全/隐私保护
3D-MIMO信道模型的MATLAB模拟与仿真
该研究利用MATLAB 2022a进行了3D-MIMO技术的仿真,结果显示了不同场景下的LOS概率曲线。3D-MIMO作为5G关键技术之一,通过三维天线阵列增强了系统容量和覆盖范围。其信道模型涵盖UMa、UMi、RMa等场景,并分析了LOS/NLOS传播条件下的路径损耗、多径效应及空间相关性。仿真代码展示了三种典型场景下的LOS概率分布。
75 1
|
4月前
|
传感器 算法
基于无线传感器网络的MCKP-MMF算法matlab仿真
MCKP-MMF算法是一种启发式流量估计方法,用于寻找无线传感器网络的局部最优解。它从最小配置开始,逐步优化部分解,调整访问点的状态。算法处理访问点的动态影响半径,根据带宽需求调整,以避免拥塞。在MATLAB 2022a中进行了仿真,显示了访问点半径请求变化和代价函数随时间的演变。算法分两阶段:慢启动阶段识别瓶颈并重设半径,随后进入周期性调整阶段,追求最大最小公平性。
基于无线传感器网络的MCKP-MMF算法matlab仿真
|
4月前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的预编码matlab性能仿真
**摘要** 本文展示了在MATLAB2022a中运行的无水印预编码算法效果。核心程序采用详细中文注释,涉及MIMO系统中关键的MMSE和量化预编码技术。MMSE准则追求信号估计的准确性,通过利用信道状态信息优化发射,减少干扰,适合高容量需求;而量化准则结合格雷码量化,将连续信号映射至离散集合,简化硬件实现,适用于功耗敏感场景,但会引入量化误差。两者权衡了性能与实现复杂度。
|
4月前
|
传感器 监控 算法
基于虚拟力优化的无线传感器网络覆盖率matlab仿真
**摘要:** 本文探讨了基于虚拟力优化提升无线传感器网络(WSNs)覆盖率的方法。通过在MATLAB2022a中仿真,显示了优化前后网络覆盖率对比及收敛曲线。虚拟力优化算法模拟物理力,以优化传感器节点布局,防止重叠并吸引至目标区域,同时考虑墙壁碰撞。覆盖计算利用平面扫描法评估圆形和正方形传感器的覆盖范围。算法通过迭代优化网络性能,以提高WSNs的监控能力。
|
4月前
|
传感器 算法
基于无线传感器网络的LC-DANSE波束形成算法matlab仿真
摘要: 此MATLAB程序对比了LC-DANSE与LCMV波束形成算法在无线传感器网络中的性能,基于SNR和MSE指标。测试在MATLAB 2022a环境下进行。核心代码涉及权重更新迭代,用于调整传感器节点权重以增强目标信号。LC-DANSE是分布式自适应算法,关注多约束条件下的噪声抑制;LCMV则是经典集中式算法,侧重单个期望信号方向。两者在不同场景下各有优势。程序结果显示SNR和MSE随迭代变化趋势,并保存结果数据。
|
11月前
|
算法 定位技术
无线定位中TDOA时延估计算法matlab仿真
无线定位中TDOA时延估计算法matlab仿真
|
11月前
|
算法 5G
基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真
基于大规模MIMO通信系统的半盲信道估计算法matlab性能仿真
|
算法 5G
m基于大规模MIMO技术的5G网络上下行功率优化算法matlab仿真
m基于大规模MIMO技术的5G网络上下行功率优化算法matlab仿真
415 0
|
传感器 算法
m基于虚拟力优化算法的二维室内红外传感器部署策略matlab仿真
m基于虚拟力优化算法的二维室内红外传感器部署策略matlab仿真
291 4