基于无线传感器网络的节点分簇算法matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 该程序对传感器网络进行分簇,考虑节点能量状态、拓扑位置及孤立节点等因素。相较于LEACH算法,本程序评估网络持续时间、节点死亡趋势及能量消耗。使用MATLAB 2022a版本运行,展示了节点能量管理优化及网络生命周期延长的效果。通过簇头管理和数据融合,实现了能量高效和网络可扩展性。

1.程序功能描述
对传感器网络进行分簇,在分簇过程中考量的有节点能量状态、节点拓扑位置、孤立节点删除等条件。与LEACH算法比较,对比如下几个方面指标:

1.网络从初始状态直到首个节点因能量耗尽而死亡的持续时间。

2.显示了随着时间的变化,一些节点开始死亡,整个网络的可用率下降的趋势情况。实验的终止条件为当网络可用节点下降至 75%时。

3.随时间变化时网络所有节点能量消耗情况。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg

3.核心程序
``` STATISTICS.COUNTCHS(ij+1) = CH_num;
%簇内成员选择簇头模块(即簇的形成模块)
for c=1:1:Cluster-1
xr(c)=0;
end
yr = 0;
zr = 0;
for i=1:1:Node
if Snode(i).type=='N' && Snode(i).E>0
if Cluster-1>=1
min_dis = sqrt( (Snode(i).xd-Snode(Node+1).xd)^2 + (Snode(i).yd-Snode(Node+1).yd)^2 );
min_dis_cluster = 0;
for c=1:Cluster-1
temp = min(min_dis,sqrt((Snode(i).xd-C(c).xd)^2 + (Snode(i).yd-C(c).yd)^2 ));
if temp do
Snode(i).E=Snode(i).E - (ETX(NByteByte) + EmpNByteByte(min_dis min_dis min_dis min_dis));
end
if min_dis <= do
Snode(i).E=Snode(i).E - ETX(NByteByte) + EfsNByteByte( min_dis min_dis);
end
ch_packet = ch_packet+1;
end
%簇头的能量消耗
Snode(i).min_dis = min_dis;
Snode(i).min_dis_cluster = min_dis_cluster;
else
yr = yr+1;
if min_dis>do
Snode(i).E=Snode(i).E-(ETX(NByteByte) + EmpNByteByte( min_dis min_dis min_dis min_dis));
end
if min_dis<=do
Snode(i).E=Snode(i).E-(ETX(NByteByte) + EfsNByteByte( min_dis min_dis));
end
bs_packet=bs_packet+1;
end
end
end

end

LIVEs = Node - STATISTICS.DEAD;
ind1 = find(abs(LIVEs - 199)<5);%一个死亡节点
ind2 = find(abs(LIVEs - 150)<5);%存活75%节点
T1 = ind1(1);
T2 = ind2(1);

figure
plot(LIVEs,'b');
hold on
plot(T1ones(1,200),0:199,'r');
hold on
plot(1:T1,199
ones(size([1:T1])),'r');
hold on
plot(T2ones(1,151),0:150,'r');
hold on
plot(1:T2,150
ones(size([1:T2])),'r');
hold on
xlabel('x(time)');
ylabel('y(live)');
title('首个节点因能量耗尽而死亡的持续时间');
axis([0,500,0,220]);
text(T1,199,['1个死亡节点']);
text(T2,150,['25%死亡节点']);

figure
plot(Egc,'b');
xlabel('x(time)');
ylabel('y(consumption)');
title('LEACH的网络能量消耗对比');
axis([0,500,0,800]);
save R0.mat Egc LIVEs T1 T2
12_031m

```

4.本算法原理
无线传感器网络(Wireless Sensor Networks, WSNs)由大量部署在监测区域内的微型传感器节点组成,通过无线通信方式形成一个多跳的自组织网络系统。其目的是协作地感知、采集和处理网络覆盖区域中被感知对象的信息,并发送给观察者。在WSNs中,节点分簇是一种重要的网络拓扑控制方法,能有效提高网络的可扩展性、能效和生命周期。

4.1节点分簇算法的基本概念

   节点分簇是将网络中的节点划分为不同的簇,每个簇由一个簇头(Cluster Head, CH)和多个簇成员(Cluster Members, CMs)组成。簇头负责管理和协调簇内的成员节点,同时负责与其他簇头或基站(Base Station, BS)进行通信。通过分簇,可以实现以下目标:

能量高效:簇头可以进行数据融合,减少传输的数据量,从而节省能量。
可扩展性:簇结构可以适应网络规模的变化。
提高网络生命周期:通过轮换簇头的方式,可以均衡网络中的能量消耗。

4.2节点分簇算法实现步骤
整个网络有一个汇聚节点(Sink节点),能量足够大,相当于基站,其功率足以发送信息至全网节点,Sink节点和簇头信息交换,整个网络共有n个节点。

(1) 在初始状态下,网内各节点向Sink节点发送能量状态信息。

(2) 汇聚节点收到各节点的能量状态信息后,计算平均能量、最大能量,据此标识各节点为强节点或弱节点。若节点i的能量E(i)≥Eav,则标识为强节点,其标识S(i)=1;若E(i)<Eav,则标识为若节点,其标识S(i)=0。

ccc4c717a5894c44ccdb69c8bb647ef2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(4) 具有最大权值的未加入簇的强节点声明为簇头,利用欧氏距离分簇,重复这一过程,直到所有的节点都被分配入簇。仅当已无强节点剩余时,弱节点方能担当簇头的备选对象。

(5) 若只有单一簇头而没有簇成员,则该簇头认为是异常孤立节点,直接删除。

(6) 经过一轮的时间段,重复(2)~(6)过程以开始下一轮的分簇。

相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
191 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
143 2
|
1月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
158 0
|
1月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
1月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
137 8
|
1月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
146 8
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
1月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
122 0
|
1月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
112 0
下一篇
oss云网关配置