基于阿里云 Serverless 容器服务轻松部署企业级 AI 应用

本文涉及的产品
应用实时监控服务-用户体验监控,每月100OCU免费额度
云原生网关 MSE Higress,422元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 基于阿里云 Serverless 容器服务轻松部署企业级 AI 应用

作者:元毅、坤仑


数禾科技 AI 模型服务基于云原生架构,为不同业务环节提供智能决策支持。随着业务的快速发展,摆在数禾面前的难题是支撑模型计算的底层应用资源无法根据请求量来调整机器资源支持运算能力。同时,随着模型在线推理服务数量的增加,数禾的模型服务也变得越来越庞大、臃肿,难以管理。这种状况不仅导致了资源浪费,还增加了维护和升级的成本。


为了解决这些“顽疾”,数禾科技采用阿里云 ASK 部署线上模型,无需 K8s 节点管理,根据实时流量动态使用 POD,资源成本节省 60%;通过 ASK Knative 服务,解决了数模型的灰度发布和多版本并存问题;得益于ASK 自动伸缩和缩容到 0 的优势,降低运行成本,大幅提升服务可用性。


目前,该系统已上线部署 500+AI 模型服务,每天能够提供上亿次查询决策服务,具备无限横向扩展的能力。同时,数禾科技 AI 模型服务支持自动调整容量,满足不同业务压力下的需求,从而保障业务的稳定运行。不仅如此,采用云原生架构方案,平均部署周期由之前的1天缩短至 0.5天,大幅提升了研发迭代效率,从而加速商业化应用的进程,为金融业务提供新的增长动力。


关于 Serverless Kubernetes(ASK)


Kubernetes(K8s)作为一个开源容器编排系统,被广泛运用于云原生应用的开发与管理。其优势在于降低运维成本,提高运维效率,形成了以 K8s 为核心的云原生生态。然而使用 K8s 常常需要用户面对的问题较多,例如资源规划、容量规划、Node 与 Pod 的亲和关系、容器网络规划、节点生命周期管理、操作系统版本、容器运行时版本兼容性等,这些问题显然不是用户所希望关心的,用户期望做的事情是专注在自身的业务逻辑,尽可能不关心这些基础设施。Serverless 的核心理念在于让开发者更聚焦业务逻辑,减少对基础设施的关注。因此我们将 K8s 复杂性下沉,提供 Serverless Kubernetes 的产品能力。



那么 Serverless Kubernetes 有哪些优势呢?主要包括以下三个方面:免运维、自动弹性、按需付费。


首先,Serverless Kubernetes 组件全托管免运维,支持自动升级 k8s 版本。其次,该产品具有极致弹性能力。可以根据业务需求,自动弹性、秒级扩容,从而在满足业务增长时自动容量规划。最后,使用 Serverless Kubernetes 的用户,只需根据实际使用量按需计费。除此之外,ASK 还提供了新增的 U 实例规格支持,统一支持多款处理器,相比上一代主售实例降价高达 40%。



为了让更多用户体验最佳实践,我们特地将其打造成了一个体验场景,配合热门开源的 AI 项目 Stable Diffusion,用户可以通过真实的云上环境,轻松体验容器化部署具备企业级弹性能力的 AI 模型。


在 ASK 中部署 Stable Diffusion


随着生成型 AI 技术的能力提升,越来越多的注意力放在了通过 AI 模型提升研发效率上。作为 AIGC(AI Generated Content)领域的知名项目 Stable Diffusion,可以帮助用户快速、准确地生成想要的场景及图片。不过当前直接在 K8s 使用 Stable Diffusion 面临如下问题:


  • 单个 Pod 处理请求的吞吐率有限,如果多个请求转发到同一个 Pod,会导致服务端过载异常,因此需要精准的控制单个 Pod 请求并发处理数。
  • GPU 资源很珍贵,期望做到按需使用资源,在业务低谷及时释放 GPU 资源


基于上面两个问题,我们提供 ASK + Knative 解决方案,可以做到基于并发精准弹性,缩容到 0,资源按需使用,打造生产可用的 Stable Diffusion 服务。


方案

这里我们在 ASK 中提供 Knative + MSE 方式解决上述问题:


  • 基于 MSE 网关,扩展 Knative 弹性插件机制,实现基于并发数精准弹性
  • 支持缩容到 0, 按需使用自动弹性
  • 多版本管理、镜像加速,助力模型快速发布迭代



实践

接下来我们介绍如何在 ASK 中部署 Stable Diffusion 服务。


服务部署

1. 在集群列表页面,单击目标集群 knative-sd-demo 进入集群信息页面,然后在左侧导航栏,选择应用>Knative。


2. 在 Knative 页面,单击服务管理页签,然后单击使用模板创建


3. 在命名空间下拉列表中,选择 default,在示例模板下拉列表中,选择 Resouce-Knative Service,将以下消息处理服务的 YAML 示例粘贴至模板,然后单击创建


默认创建一个名为 knative-sd-demo 的服务。


apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: knative-sd-demo
  annotations:
    serving.knative.dev.alibabacloud/affinity: "cookie"
    serving.knative.dev.alibabacloud/cookie-name: "sd"
    serving.knative.dev.alibabacloud/cookie-timeout: "1800"
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/class: mpa.autoscaling.knative.dev
        autoscaling.knative.dev/maxScale: '10'
        autoscaling.knative.dev/targetUtilizationPercentage: "100"
        k8s.aliyun.com/eci-use-specs: ecs.gn5-c4g1.xlarge,ecs.gn5i-c8g1.2xlarge,ecs.gn5-c8g1.2xlarge  
    spec:
      containerConcurrency: 1
      containers:
      - args:
        - --listen
        - --skip-torch-cuda-test
        - --api
        command:
        - python3
        - launch.py
        image: yunqi-registry.cn-shanghai.cr.aliyuncs.com/lab/stable-diffusion@sha256:64999ff1aba706f65a2234d861d46318f7d58e2790b31ace0d567a96e65b617c
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 7860
          name: http1
          protocol: TCP
        name: stable-diffusion
        readinessProbe:
          tcpSocket:
            port: 7860
          initialDelaySeconds: 5
          periodSeconds: 1
          failureThreshold: 3


参数说明:

  • 支持 Cookie 会话保持:serving.knative.dev.alibabacloud/affinity
  • 支持多种 GPU 规格配置:k8s.aliyun.com/eci-use-specs
  • 支持并发数设置:containerConcurrency



4. 在服务管理页签,刷新页面后,当 knative-sd-demo 的状态变为成功时,表明 SD 服务部署成功。

image.png


服务访问并进行压测

部署压测服务 portal-server,用于 Stable Diffusion 效果展示并发起压测。


1. 在 Knative 页面,单击服务管理页签,然后单击使用模板创建


2. 在命名空间下拉列表中,选择 default,在示例模板下拉列表中,选择自定义,将以下 portal-server 压测服务的 YAML 示例粘贴至模板,然后单击创建


---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: portal-server
  name: portal-server
spec:
  replicas: 1
  selector:
    matchLabels:
      app: portal-server
  template:
    metadata:
      labels:
        app: portal-server
    spec:
      serviceAccountName: portal-server
      containers:
        - name: portal-server
          image: registry-vpc.cn-beijing.aliyuncs.com/acs/sd-yunqi-server:v1.0.2
          imagePullPolicy: IfNotPresent
          env:
            - name: MAX_CONCURRENT_REQUESTS
              value: "5"
            - name: POD_NAMESPACE
              value: "default"
          readinessProbe:
            failureThreshold: 3
            periodSeconds: 1
            successThreshold: 1
            tcpSocket:
              port: 8080
            timeoutSeconds: 1
---
apiVersion: v1
kind: Service
metadata:
  annotations:
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-address-type: internet
    service.beta.kubernetes.io/alibaba-cloud-loadbalancer-instance-charge-type: PayByCLCU
  name: portal-server
spec:
  externalTrafficPolicy: Local
  ports:
    - name: http-80
      port: 80
      protocol: TCP
      targetPort: 8080
    - name: http-8888
      port: 8888
      protocol: TCP
      targetPort: 8888
  selector:
    app: portal-server
  type: LoadBalancer
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: pod-list-cluster-role
rules:
  - apiGroups: [""]
    resources: ["pods"]
    verbs: ["list"]
  - apiGroups: ["networking.k8s.io"]
    resources: ["ingresses"]
    verbs: ["get"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: pod-list-cluster-role-binding
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: pod-list-cluster-role
subjects:
  - kind: ServiceAccount
    name: portal-server
    namespace: default
---
apiVersion: v1
kind: ServiceAccount
metadata:
  name: portal-server
  namespace: default


3. 选择网络>服务,服务页面,查看 portal-server 压测服务,获取访问 IP 为 123.56.XX.XX。



4. 在浏览器中输入 http://123.56.XX.XX,然后在该页面单击 Stable Diffusion 跳转至 Stable Diffusion 访问页面。



a. Stable Diffusion 访问页面如下所示。例如,在如下文本框中输入 cat,然后单击 Generate,将展示与输入有关的图片信息。



b. 在压测访问页面,设置并发数5总请求数20,然后单击开始压测,查看压测的结果。



压测期间,可以看到创建了 5 个 Pod,并且每个请求均会生成一个图片,图片生成后将展示到页面中。


查看可观测大盘

此外在 Knative 提供了开箱即用的可观测能力,在 Knative 页面,单击监控大盘页签。即可看到 Stable Diffusion 服务的请求量(Request Volume)、请求成功率(Success Rate)、4xx(客户端错误)、5xx(服务器端错误)和Pod扩缩容趋势的监控数据。



Response Time 区域,查看 Knative 的响应延迟数据,包括 P50、P90、P95 和 P99。



小结


基于 ASK Knative 并发精准弹性,缩容到 0,多版本管理等功能,可以轻松部署企业级 AI 服务。当前已在阿里云云起实验提供《基于 ASK 轻松部署企业级 Stable Diffusion》动手实践,欢迎体验:

扫码体验企业级弹性能力


体验地址:

https://developer.aliyun.com/adc/scenario/de33e7d3065949f3b81db292b2dca5ea

相关实践学习
巧用云服务器ECS制作节日贺卡
本场景带您体验如何在一台CentOS 7操作系统的ECS实例上,通过搭建web服务器,上传源码到web容器,制作节日贺卡网页。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
1月前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
138 12
|
14天前
|
人工智能 运维 Kubernetes
阿里云容器服务AI助手2.0 - 新一代容器智能运维能力
2024年11月,阿里云容器服务团队进一步深度融合现有运维可观测体系,在场景上覆盖了K8s用户的全生命周期,正式推出升级版AI助手2.0,旨在更好地为用户使用和运维K8S保驾护航。
|
15天前
|
Ubuntu Linux 开发工具
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
Docker 是一个开源的容器化平台,允许开发者将应用程序及其依赖项打包成标准化单元(容器),确保在任何支持 Docker 的操作系统上一致运行。容器共享主机内核,提供轻量级、高效的执行环境。本文介绍如何在 Ubuntu 上安装 Docker,并通过简单步骤验证安装成功。后续文章将探讨使用 Docker 部署开源项目。优雅草央千澈 源、安装 Docker 包、验证安装 - 适用场景:开发、测试、生产环境 通过以上步骤,您可以在 Ubuntu 系统上成功安装并运行 Docker,为后续的应用部署打下基础。
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
|
1月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
19天前
|
Prometheus Kubernetes 监控
OpenAI故障复盘 - 阿里云容器服务与可观测产品如何保障大规模K8s集群稳定性
聚焦近日OpenAI的大规模K8s集群故障,介绍阿里云容器服务与可观测团队在大规模K8s场景下我们的建设与沉淀。以及分享对类似故障问题的应对方案:包括在K8s和Prometheus的高可用架构设计方面、事前事后的稳定性保障体系方面。
|
11天前
|
监控 安全 Cloud Native
阿里云容器服务&云安全中心团队荣获信通院“云原生安全标杆案例”奖
2024年12月24日,阿里云容器服务团队与云安全中心团队获得中国信息通信研究院「云原生安全标杆案例」奖。
|
1月前
|
供应链 安全 Cloud Native
阿里云容器服务助力企业构建云原生软件供应链安全
本文基于2024云栖大会演讲,探讨了软件供应链攻击的快速增长趋势及对企业安全的挑战。文中介绍了如何利用阿里云容器服务ACK、ACR和ASM构建云原生软件供应链安全,涵盖容器镜像的可信生产、管理和分发,以及服务网格ASM实现应用无感的零信任安全,确保企业在软件开发和部署过程中的安全性。
|
1月前
|
人工智能 Kubernetes Cloud Native
阿里云容器服务,智算时代云原生操作系统
2024云栖大会,阿里巴巴研究员易立分享了阿里云容器服务的最新进展。容器技术已成为云原生操作系统的基石,支持多样化的应用场景,如自动驾驶、AI训练等。阿里云容器服务覆盖公共云、边缘云、IDC,提供统一的基础设施,助力客户实现数字化转型和技术创新。今年,阿里云在弹性计算、网络优化、存储解决方案等方面进行了多项重要升级,进一步提升了性能和可靠性。
|
1月前
|
人工智能 Cloud Native 调度
阿里云容器服务在AI智算场景的创新与实践
本文源自张凯在2024云栖大会的演讲,介绍了阿里云容器服务在AI智算领域的创新与实践。从2018年推出首个开源GPU容器共享调度方案至今,阿里云容器服务不断推进云原生AI的发展,包括增强GPU可观测性、实现多集群跨地域统一调度、优化大模型推理引擎部署、提供灵活的弹性伸缩策略等,旨在为客户提供高效、低成本的云原生AI解决方案。
|
1月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。

相关产品

  • 容器计算服务
  • 函数计算