布隆过滤器原理和使用场景

本文涉及的产品
应用实时监控服务-用户体验监控,每月100OCU免费额度
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 布隆过滤器(Bloom Filter)是一种高效的空间节省型数据结构,用于判断元素是否存在于集合中。它通过多个哈希函数将元素映射到位数组,查询时检查对应位是否全为1。优点是空间效率高,缺点是有一定误判率。典型应用场景包括缓存穿透防护、垃圾邮件过滤、黑名单管理及去重等。Java实现中使用BitSet和自定义哈希函数,而Guava和Redis也提供了布隆过滤器的实现。

1.什么是布隆过滤器

Bloom Filter 会使用一个较大的 bit 数组来保存所有的数据,数组中的每个元素都只占用 1 bit ,并且每个元素只能是 0 或者 1(代表 false 或者 true),用于检索元素是否存在于大集合中的数据结构。

缺点是:有一定的错误识别率

2.原理介绍

核心原理:

  • 数据结构:二进制数组+多个哈希函数组成
  • 添加元素:通过多个哈希函数计算得到多个位数组位置,将这些位置设为1
  • 查询元素:进行相同的哈希计算,判断数组中每个位置的元素是否都为1,如果都为1,则可能存在,如果有一个值不为1,则一定不存在

布隆过滤器原理.png

不同的字符串可能哈希出来的位置相同,这种情况我们可以适当增加位数组大小或者调整我们的哈希函数。

综上,我们可以得出:布隆过滤器说某个元素存在,小概率会误判。布隆过滤器说某个元素不在,那么这个元素一定不在。

3.使用场景

主要是两种场景:

  • 判断给定数据是否存在
    • 缓存穿透防护(拦截不存在的数据请求,避免频繁查询数据库)
    • 邮箱垃圾邮件过滤(判断一个邮件地址是否在垃圾邮件列表中)
    • 黑名单功能(判断一个IP或者手机号等是否在黑名单中)
  • 去重
    • 爬虫URL去重(爬给定网址时对已爬过的URL去重)
    • 对巨量QQ号、订单号去重
    • 抖音推荐功能,推荐的视频不重复

4.具体实现(java手写)

了解了布隆过滤器的原理,可以手动实现一个,关键步骤有:

  • 一个合适大小的位数组
  • 几个不同的哈希函数
  • 添加元素到位数组的方法实现
  • 查询方法,即判断元素是否在位数组的方法实现

直接贴一个代码案例:

import java.util.BitSet;

public class MyBloomFilter {
   

    /**
     * 位数组的大小
     */
    private static final int DEFAULT_SIZE = 2 << 24;
    /**
     * 通过这个数组可以创建 6 个不同的哈希函数
     */
    private static final int[] SEEDS = new int[]{
   3, 13, 46, 71, 91, 134};

    /**
     * 位数组。数组中的元素只能是 0 或者 1
     */
    private BitSet bits = new BitSet(DEFAULT_SIZE);

    /**
     * 存放包含 hash 函数的类的数组
     */
    private SimpleHash[] func = new SimpleHash[SEEDS.length];

    /**
     * 初始化多个包含 hash 函数的类的数组,每个类中的 hash 函数都不一样
     */
    public MyBloomFilter() {
   
        // 初始化多个不同的 Hash 函数
        for (int i = 0; i < SEEDS.length; i++) {
   
            func[i] = new SimpleHash(DEFAULT_SIZE, SEEDS[i]);
        }
    }

    /**
     * 添加元素到位数组
     */
    public void add(Object value) {
   
        for (SimpleHash f : func) {
   
            bits.set(f.hash(value), true);
        }
    }

    /**
     * 判断指定元素是否存在于位数组
     */
    public boolean contains(Object value) {
   
        boolean ret = true;
        for (SimpleHash f : func) {
   
            ret = ret && bits.get(f.hash(value));
        }
        return ret;
    }

    /**
     * 静态内部类。用于 hash 操作!
     */
    public static class SimpleHash {
   

        private int cap;
        private int seed;

        public SimpleHash(int cap, int seed) {
   
            this.cap = cap;
            this.seed = seed;
        }

        /**
         * 计算 hash 值
         */
        public int hash(Object value) {
   
            int h;
            return (value == null) ? 0 : Math.abs((cap - 1) & seed * ((h = value.hashCode()) ^ (h >>> 16)));
        }

    }
}

5.中间件实现

Guava实现的布隆过滤器

Guava 中布隆过滤器的实现算是比较权威的,缺陷是只能单机使用。要想在分布式场景使用,需要用redis的布隆过滤器。

具体代码实现可以自行搜索

Redis的布隆过滤器

Redis官网推荐了一个 RedisBloom 作为 Redis 布隆过滤器的 Module,地址:https://github.com/RedisBloom/RedisBloom

除此之外,还有其他模块的布隆过滤器。

基础操作命令

命令 作用 示例
BF.ADD 向布隆过滤器添加单个元素,若key不存在则自动创建(默认参数:error_rate=0.01, capacity=100)。 BF.ADD user_filter "user:1001"
BF.MADD 批量添加多个元素到布隆过滤器。 BF.MADD user_filter "user:1002" "user:1003"
BF.EXISTS 判断单个元素是否可能存在于过滤器中(返回1可能存在,0一定不存在)。 BF.EXISTS user_filter "user:1001"
BF.MEXISTS 批量判断多个元素是否存在。 BF.MEXISTS user_filter "user:1001" "invalid_user"

实际使用:

127.0.0.1:6379> BF.ADD myFilter java
(integer) 1
127.0.0.1:6379> BF.ADD myFilter javag
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter java
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter javag
(integer) 1
127.0.0.1:6379> BF.EXISTS myFilter github
(integer) 0
相关文章
|
9月前
|
存储 NoSQL Redis
详解布隆过滤器的原理、使用场景和注意事项
详解布隆过滤器的原理、使用场景和注意事项
296 0
|
7月前
|
存储 缓存 NoSQL
详解布隆过滤器原理与实现
详解布隆过滤器原理与实现
|
9月前
|
XML 监控 大数据
基于Guava布隆过滤器优化海量字符串去重策略
**Guava Bloom Filter实践:** 在大数据场景下,利用布隆过滤器进行高效字符串去重。Guava提供易用的BloomFilter实现,通过添加Guava依赖,设定预期元素数和误报率来创建过滤器。尽管可能产生误报,但不会漏报,常用于初期快速判断。添加元素,使用`mightContain`查询,若可能存在,再用精确数据结构确认。优化涉及选择哈希函数、调整误报率和避免重复添加。
|
9月前
|
存储 算法 安全
基于Guava布隆过滤器的海量字符串高效去重实践
基于Guava布隆过滤器的海量字符串高效去重实践
|
9月前
|
存储 机器学习/深度学习 缓存
【数据结构】布隆过滤器原理详解及其代码实现
【数据结构】布隆过滤器原理详解及其代码实现
|
存储 数据采集 缓存
布隆过滤器:原理与应用
在日常生活和工作中,我们经常需要处理海量的数据,筛选出有用的信息。这个时候,布隆过滤器(Bloom Filter)就派上了用场。
209 1
布隆过滤器:原理与应用
|
10月前
|
存储 NoSQL Java
什么是布隆过滤器?如何实现布隆过滤器?
什么是布隆过滤器?如何实现布隆过滤器?
175 0
|
数据采集 缓存 NoSQL
干货 | 使用布隆过滤器实现高效缓存
本文主要描述,使用布隆过滤实现高效缓存。文中采用数组做为缓存,如果需要高并发命中,则需将文中的数组换成Redis数据库。
干货 | 使用布隆过滤器实现高效缓存
REDIS07_布隆过滤器BloomFilter的概述、优缺点、使用场景、底层原理、布谷鸟过滤器(三)
REDIS07_布隆过滤器BloomFilter的概述、优缺点、使用场景、底层原理、布谷鸟过滤器(三)
328 0
REDIS07_布隆过滤器BloomFilter的概述、优缺点、使用场景、底层原理、布谷鸟过滤器(三)
|
存储 缓存 NoSQL
【Redis从头学-15】三个通俗例子带你理解Redis缓存击穿、缓存穿透、缓存雪崩并从思路引导三者的解决方案
【Redis从头学-15】三个通俗例子带你理解Redis缓存击穿、缓存穿透、缓存雪崩并从思路引导三者的解决方案
121 0