【排序算法(四)】归并排序&&计数排序(非比较排序)以及八大排序算法的总结(下)

简介: 【排序算法(四)】归并排序&&计数排序(非比较排序)以及八大排序算法的总结(下)

不修正区间 :

第一种越界情况,修正区间之后由于后面的数据不归并了,实际上也就是拷贝了原数组的数据到tmp,然后又拷贝回原数组,所以没必要修正, 直接break 掉。

if (end1 >= n)
{
  break;
}

第二种越界情况,同第一种,实际上也是拷贝原数组的数据,也可以 break 。

else if (begin2 >= n)
{
  break;
}

但是第三种越界情况,就需要修正一下,否则这次归并无法完成,之后的归并也都错误了,让 end2=n−1 。

else if (end2 >= n)
{
  end2 = n - 1;//修正end2边界,以完成数组尾部剩余子数组的归并
  //break;
}

而这种情况只能边归并边拷贝,因为有些区间是未处理的,如果贸然进行拷贝会把随机值,或者错误数据拷贝进来。

memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
• 1

循环内拷贝,不修正区间,归并一部分,拷贝一部分:

void MergeSortNonR(int* a, int n)
{
  int* tmp = (int*)malloc(sizeof(int) * n);
  if (tmp == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
  int gap = 1;
  while (gap < n)
  {
    for (int i = 0; i < n; i += 2 * gap)
    {
      int begin1 = i, end1 = i + gap - 1;
      int begin2 = i + gap, end2 = i + 2 * gap - 1;
      int j = i;
      if (end1 >= n)
      {
        break;
      }
      else if (begin2 >= n)
      {
        break;
      }
      else if (end2 >= n)
      {
        end2 = n - 1;
        //break;
      }
      while (begin1 <= end1 && begin2 <= end2)
      {
        // 保持稳定性
        if (a[begin1] <= a[begin2])
        {
          tmp[j++] = a[begin1++];
        }
        else
        {
          tmp[j++] = a[begin2++];
        }
      }
      while (begin1 <= end1) tmp[j++] = a[begin1++];
      while (begin2 <= end2) tmp[j++] = a[begin2++];
      memcpy(a + i, tmp + i, sizeof(int) * (end2 - i + 1));
    }
    // 这里不能外部拷贝,因为有些情况是直接 break 出来的,tmp 中不是正确数据
    // memcpy(a, tmp, sizeof(int) * n); // 会把错误数据拷入
    gap *= 2;
  }
  free(tmp);
  tmp = NULL;
}

1.5 特性及复杂度

由于归并排序的数组划分每次都是严格地二分,每次排序子数组划分结构都是稳定的满二叉树(或接近满二叉树)结构,因此归并排序的时间复杂度在各种情况下都不会有变化(不会像快排,希尔排那样由于所处理的序列的逆序数的差异而导致算法时间复杂度有所变化)。然而由于有序序列归并操作需要额外开辟数组来完成,因此归并排序有较大的空间消耗,这是归并排序的一个缺陷


对于归并递归版本,每次都是区间二分,然后开始递归的。所以递归层数是严格logN ,每次递归中时间复杂度为O(N) ,所以总体时间复杂度为O(N*logN) ;对于非递归,gap每次乘 2 ,每次 gap 处理的时间复杂度为 O(N) ,时间复杂度也是 O(N *logN)。


对于归并排序的空间复杂度,递归和非递归有一些计算上的区别,但是结果不影响。

归并排序首先需要一个 tmp 数组,空间复杂度为 O(N) 。如果对于递归,还会开 logN 层栈帧,所以递归版本消耗的总空间大约为O(N+logN) ,当 N 足够大时,logN 省略,所以为 O(N);对于非递归,那么就仅仅只有tmp 的消耗。

所以综上所述,归并的空间复杂度为 O(N)。

特性:归并的缺点在于需要 O(N) 的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。

时间复杂度:O(N*logN) 。

空间复杂度:O(N) 。

稳定性:稳定。

2、计数排序

2.1 算法思想

思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。

计数排序的动图:a18cfed3c30f41cb8dd87d9ca1892eb1.gif

计数排序实际上就是将数组中对应数据出现的次数,将数据出现次数映射到一个新数组中。在与数据相等值的下标处,将这个下标位置的元素自增。每出现一个数字就自增一次。

平常的映射就是直接在其相等下标位置处理,叫做 绝对映射 ;还有一种映射方式叫 相对映射

绝对映射:

所谓绝对映射,就是开辟一个辅助数组count ,数组大小为待排序数组的最大元素的大小 max ,然后遍历数组,将数据映射到辅助数组 count 中

image.png然后根据count 数组中的元素,根据元素对应的下标,将下标的值填入 a 数组中,如果 count 数组中该位置为 0 , 则不需要填。image.png最后 a 数组中的元素就已经被排序好了。


绝对映射 的缺点:当最大元素很大,或者是出现负数时,就无法映射了。因为空间开大了浪费空间,并且无法在负数下标自增。所以这就引出了 相对映射 。


相对映射:

相对映射是根据数据之间的相对情况来开辟数组大小,并在转换后的相对位置执行映射。

比如有这样一组数据:{328,325,323,321} ,对于这组数据我们开 329 个空间肯定是浪费的。


我们相对映射的思路就是遍历序列,找到序列最大值 max 和最小值 min ,然后开辟max−min+1 个空间,让空间尽可能充分利用。


之后映射自增时,也使用相对位置,这个相对位置就是数组元素减去数组元素的最小值:a[i] - min 。


在最后将元素放到原数组中时,也需要将数组下标加上最小值:i + min 放回去就可以。


通过相对映射,对于元素有负数,和空间浪费的情况都可以解决。(ps:元素有负数的情况,无需特殊处理,因为相对映射的原因,这些步骤都可以正确进行,不信可以试验一下)。

2.2 代码实现

接口实现步骤:

1.找出待排序的数组中最大和最小的元素。

2.统计数组中每个值为 i 的元素出现的次数,存入数组 count 的第 i 项。

3.对所有的计数累加(从 count 中的第一个元素开始,每一项和前一项相加)。

4.反向填充目标数组:将每个元素 i 放在新数组的第 count(i) 项,每放一个元素就将count(i) 减1。

接下来使用相对映射的思路:

// 计数排序 正负数都可以排
void CountSort(int* a, int n)
{
  // 1. 找最小值和最大值
  int max = a[0], min = a[0];
  for (int i = 0; i < n; i++)
  {
    if (a[i] > max)
    {
      max = a[i];
    }
    if (a[i] < min)
    {
      min = a[i];
    }
  }
  // 2. 根据差值构建 count 数组
  int range = max - min + 1;
  int* count = (int*)malloc(sizeof(int) * range);
  if (count == NULL)
  {
    perror("malloc fail");
    exit(-1);
  }
    // 初始化
  memset(count, 0, sizeof(int) * range);
  // 3. 将值映射到count数组中
  for (int i = 0; i < n; i++)
  {
    count[a[i] - min]++; // 映射到相对位置
  }
  int cnt = 0;
  for (int i = 0; i < range; i++)
  {
    while (count[i]--)
    {
      a[cnt++] = i + min;
    }
  }
  free(count);
}

2.3 特性及复杂度

计数排序的时间复杂度其实是由 range 和 N 的关系来衡量的,当我们不确定range和 N 的大小时,我们可以认为 计数排序的时间复杂度取O(max(N,range)) 较大的一个。

空间复杂度则是 O(range)。


实际上通过时空复杂度上看,我们发现计数排序在数据集中的情况下是很强的,能达到几乎 O(N) 的时间复杂度,并且空间复杂度也不会太大。但是对于范围分散,跨度大的序列就不适合,不仅时间没啥优势,空间占比也是个大问题。所以计数排序的适用范围是有限的,如:字符串、浮点数等就不适合

特性:计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。

时间复杂度:O(MAX(N,范围)) 。

空间复杂度:O(范围) 。

稳定性:稳定。

3、八大排序算法总结image.png

排序的稳定性

假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且 r[i] 在r[j] 之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。简单来说,在排相等的两个数时,这两个数不交换,比如遇到 5 5 时,不发生交换。

网络异常,图片无法展示
|
稳定性是排序算法一种额外的优点。如果一种排序可以通过某种措施,达到数据相对次序不变的效果,则称该排序是稳定的。

4、排序性能测试

void TestOP()
{
  srand(time(0));
  const int N = 10000000;
  int* a1 = (int*)malloc(sizeof(int) * N);
  int* a2 = (int*)malloc(sizeof(int) * N);
  int* a3 = (int*)malloc(sizeof(int) * N);
  int* a4 = (int*)malloc(sizeof(int) * N);
  int* a5 = (int*)malloc(sizeof(int) * N);
  int* a6 = (int*)malloc(sizeof(int) * N);
  int* a7 = (int*)malloc(sizeof(int) * N);
  for (int i = 0; i < N; ++i)
  {
    a1[i] = rand();
    a2[i] = a1[i];
    a3[i] = a1[i];
    a4[i] = a1[i];
    a5[i] = a1[i];
    a6[i] = a1[i];
    a7[i] = a1[i];
  }
  // clock 获取程序运行到这块的时间
  // end1 - begin1 = 排序时间
  // 获取的是毫秒
  // 时间过小时,计算不出来
  int begin1 = clock();
  InsertSort(a1, N);
  int end1 = clock();
  int begin2 = clock();
  ShellSort(a2, N);
  int end2 = clock();
  int begin3 = clock();
  SelectSort(a3, N);
  int end3 = clock();
  int begin4 = clock();
  HeapSort(a4, N);
  int end4 = clock();
  int begin5 = clock();
  QuickSortT(a5, 0, N - 1);
  int end5 = clock();
  int begin6 = clock();
  BubbleSort(a6, N);
  int end6 = clock();
  int begin7 = clock();
  MergeSort(a7, N);
  MergeSortNonR(a7, N);
  int end7 = clock();
  printf("InsertSort:%d\n", end1 - begin1);
  printf("ShellSort:%d\n", end2 - begin2);
  printf("SelectSort:%d\n", end3 - begin3);
  printf("HeapSort:%d\n", end4 - begin4);
  printf("QuickSort:%d\n", end5 - begin5);
  printf("BubbleSort:%d\n", end6 - begin6);
  printf("MergeSort:%d\n", end7 - begin7);
  free(a1);
  free(a2);
  free(a3);
  free(a4);
  free(a5);
  free(a6);
  free(a7);
}

5.总结:

今天我们认识并具体学习了归并排序和非比较排序中的计数排序,以及对八大排序算法进行了总结,到这里我们的排序算法学习就暂告一段落啦。接下来,我们将开始学习C++的相关知识。希望我的文章和讲解能对大家的学习提供一些帮助。

当然,本文仍有许多不足之处,欢迎各位小伙伴们随时私信交流、批评指正!我们下期见~

c3ad96b16d2e46119dd2b9357f295e3f.jpg

相关文章
|
2月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
148 7
|
2月前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
122 8
|
3月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
39 0
数据结构与算法学习十四:常用排序算法总结和对比
|
3月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
44 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
3月前
|
算法
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
36 0
|
3月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
11天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
145 80
|
5天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
7天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
4天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。

热门文章

最新文章