面经|缺失值填补的7种方法(使用场景+Python代码)

简介: 面经|缺失值填补的7种方法(使用场景+Python代码)

示例数据

本文所使用的示例数据创建如下:

import pandas as pd
import numpy as np
data = pd.DataFrame({
    'name': ['Bob', 'Mary', 'Peter', np.nan, 'Lucy'],
    'score': [99, 100, np.nan, 91, 95],
    'class': ['class1', 'class2', 'class1', 'class2', np.nan],
    'sex': ['male', 'fmale', 'male', 'male', 'fmale'],
    'age': [23, 25, 20, 19, 24]
})

image.png

一、均值填充

适用数据类型:数值类型

适用场景:数据整体极值差异不大时

举例:对成年男性身高的缺失值进行填充

代码示例:对data数据中的score进行均值填充

data['score'].fillna(data['score'].mean())
# 结果如下
0     99.00
1    100.00
2     96.25
3     91.00
4     95.00

二、中位数填充

适用数据类型:数值类型

适用场景:数据整体极值差异较大时

举例:对人均收入进行填充(数据中含有高收入人群:如马总)

代码示例:对data数据中的score进行中位数填充

data['score'].fillna(data['score'].median())
# 结果如下
0     99.0
1    100.0
2     97.0
3     91.0
4     95.0

三、众数填充

适用数据类型:字符类型|没有大小关系的数值类型数据

适用场景:大多数情况下

举例:对城市信息的缺失进行填充/对工人车间编号进行填充

代码示例:对data数据中的class进行众数填充(注意:众数填充时要通过索引0进行取值,一组数据的众数可能有多个,索引为0的数据一定会存在)

data['class'].fillna(data['class'].mode()[0])
# 结果如下
0    class1
1    class2
2    class1
3    class2
4    class1

四、前后数据填充

适用数据类型:数值类型|字符类型

适用场景:数据行与行之间具有前后关系时

举例:学年成绩排行中的某同学某科目成绩丢失

代码示例:对data数据中的score进行前后数据填充

# 前文填充
data['score'].fillna(method='pad')
# 后文填充
data['score'].fillna(method='bfill')
# 前文填充结果
0     99.0
1    100.0
2    100.0
3     91.0
4     95.0
# 后文填充结果
0     99.0
1    100.0
2     91.0
3     91.0
4     95.0

五、自定义数据填充

适用数据类型:数值类型|字符类型

适用场景:业务规定外的数据

举例:某调查问卷对婚后幸福程度进行调查,到那时很多人是未婚,可以自定义内容表示未婚人群

代码示例:对data数据中的name进行自定义数据填充

data['name'].fillna('no_name')
# 结果如下
0        Bob
1       Mary
2      Peter
3    no_name
4       Lucy

六、Pandas插值填充

适用数据类型:数值类型

适用场景:数据列的含义较为复杂,需要更精确的填充方法时

举例:对所有带有nan的数值列dataframe进行填充

说明:pandas中进行空值填充的方法为interpolate(),该方法的本质是使用各种数学(统计学)中的插值方法进行填充,其中包含最近邻插值法、阶梯插值、线性插值、B样条曲线插值等多种方法。

参数说明:interpolate()参数介绍

代码示例:

data['score'].interpolate()
# 结果如下
0     99.0
1    100.0
2     95.5
3     91.0
4     95.0

七、机器学习算法填充

适用数据类型:数值类型|字符类型

适用场景:具有多种数据维度的场景

说明:可以选择不同的回归|分类模型对数据进行填充

注意:下面的例子中不考虑具体场景,只是用于举例

数值类型数据填充代码示例(线性回归):

from sklearn.linear_model import LinearRegression
# 获取数据
data_train = data.iloc[[0, 1, 3]]
data_train_x = data_train[['age']]
data_train_y = data_train['score']
# 使用线性回归进行拟合
clf = LinearRegression()
clf.fit(data_train_x, data_train_y)
# 使用预测结果进行填充
data['score'].iloc[2] = clf.predict(pd.DataFrame(data[['age']].iloc[2]))

image.png

字符类型数据填充代码示例(决策树):

from sklearn.tree import DecisionTreeClassifier
# 获取数据
data_train = data.iloc[[0, 1, 3]]
data_train_x = data_train[['age']]
data_train_y = data_train['class']
# 使用决策树进行拟合
clf = DecisionTreeClassifier()
clf.fit(data_train_x, data_train_y)
# 使用分类结果进行填充
data['class'].iloc[4] = clf.predict(pd.DataFrame(data[['age']].iloc[4]))[0]

image.png

相关文章
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
38 6
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
81 3
|
8天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
51 33
|
9天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
32 10
|
30天前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
29天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
66 8
|
1月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
55 11
|
1月前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
42 11
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
51 6
下一篇
开通oss服务