带你读《企业级云原生白皮书项目实战》——4.4.3 开源日志方案比对

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 带你读《企业级云原生白皮书项目实战》——4.4.3 开源日志方案比对

4.4.3 开源日志方案比对


提到日志系统,很多人都会使用ELK Stack(Elastic/Logstash/Kibana)来采集存储数据,Kafka用作数据临时存储,Flink用来业务数据实时分析,从而实时对业务的监控、风控。但是在以上看似简单的架构中,也隐藏了大量细节需要关注。以ES为例,用户需要关注以下几个方面:磁盘需要预留的数据空间,即原始数据*膨胀系数*(1+副本数)*(1+预留空间);数据冷热分离问题,所有数据全部保存到SSD上,成本过高。需要根据数据的重要程度和时间因素,将部分索引数据直接保存至HDD磁盘或使用Rollover功能迁移索引数据;索引设置,每个应用的两类日志,分别按照时间周期性创建索引,根据数据大小合理设置Shard数,单Shard以30~50 GB为宜,但是各应用的日志量很难准确估计,常在遇到写入或查询问题后再调整,然而重建索引的消耗又非常大;Kafka消费设置,使用Logstash消费Kafka数据再写入到ES,需要Kafka topic的patition数和logconsumer_threads相匹配,否则容易导致各partition消费不均。ES参数调优,即对写入吞吐、可见性延时、数据安全性以及查询性能等多方面因素进行综合评估和权衡后,结合集群CPU、内存,对ES一些列参数进行调优,才能更好发挥ES的特性。以上是在使用和运维ES集群中,经常会遇到和需要注意的问题,稳定维护好ES集群可真不是一件容易的事情,特别是当数据逐步扩大到数百TB,又有大量使用需求的情况下。同样的问题也存在其他系统中,这对于平时工作极其繁忙的运维和SRE同学是不小的负担。

云上一体化服务针对运维和SRE团队工作中的监控分析平台需求,以及平台搭建过程中遇到的种种问题,提供一套简单易用、稳定可靠、高性能而又具有良好性价比的解决方案。其具有以下优点:接入数据极其简便,能对数据进行实时消费并且能和对应的生态对接;海量数据查询分析力,日志服务具备百亿规模秒级查询,支持交互式查询,支持机器学习、安全检测等函数;支持数据加工,支持对数据的富化、脱敏等处理;能对日志进行异常智能诊断,及时发现异常数据;以及可以一站式完成告警监控、降噪、事务管理、通知分派等任务。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
5月前
|
存储 监控 Serverless
阿里泛日志设计与实践问题之Grafana Loki在日志查询方案中存在哪些设计限制,如何解决
阿里泛日志设计与实践问题之Grafana Loki在日志查询方案中存在哪些设计限制,如何解决
|
2月前
|
消息中间件 存储 Apache
探索 RocketMQ:企业级消息中间件的选择与应用
RocketMQ 是一个高性能、高可靠、可扩展的分布式消息中间件,它是由阿里巴巴开发并贡献给 Apache 软件基金会的一个开源项目。RocketMQ 主要用于处理大规模、高吞吐量、低延迟的消息传递,它是一个轻量级的、功能强大的消息队列系统,广泛应用于金融、电商、日志系统、数据分析等领域。
152 0
探索 RocketMQ:企业级消息中间件的选择与应用
|
3月前
|
消息中间件 编解码 Docker
【Docker项目实战】Docker部署RabbitMQ消息中间件
【10月更文挑战第8天】Docker部署RabbitMQ消息中间件
166 1
【Docker项目实战】Docker部署RabbitMQ消息中间件
|
2月前
|
消息中间件 存储 监控
微服务日志监控的挑战及应对方案
【10月更文挑战第23天】微服务化带来模块独立与快速扩展,但也使得日志监控复杂。日志作用包括业务记录、异常追踪和性能定位。
|
3月前
|
消息中间件 中间件 数据库
NServiceBus:打造企业级服务总线的利器——深度解析这一面向消息中间件如何革新分布式应用开发与提升系统可靠性
【10月更文挑战第9天】NServiceBus 是一个面向消息的中间件,专为构建分布式应用程序设计,特别适用于企业级服务总线(ESB)。它通过消息队列实现服务间的解耦,提高系统的可扩展性和容错性。在 .NET 生态中,NServiceBus 提供了强大的功能,支持多种传输方式如 RabbitMQ 和 Azure Service Bus。通过异步消息传递模式,各组件可以独立运作,即使某部分出现故障也不会影响整体系统。 示例代码展示了如何使用 NServiceBus 发送和接收消息,简化了系统的设计和维护。
85 3
|
8月前
|
存储 数据采集 Kubernetes
一文详解K8s环境下Job类日志采集方案
本文介绍了K8s中Job和Cronjob控制器用于非常驻容器编排的场景,以及Job容器的特点:增删频率高、生命周期短和突发并发大。文章重点讨论了Job日志采集的关键考虑点,包括容器发现速度、开始采集延时和弹性支持,并对比了5种采集方案:DaemonSet采集、Sidecar采集、ECI采集、同容器采集和独立存储采集。对于短生命周期Job,建议使用Sidecar或ECI采集,通过调整参数确保数据完整性。对于突发大量Job,需要关注服务端资源限制和采集容器的资源调整。文章总结了不同场景下的推荐采集方案,并指出iLogtail和SLS未来可能的优化方向。
|
4月前
|
Kubernetes API Docker
跟着iLogtail学习容器运行时与K8s下日志采集方案
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
|
5月前
|
Java 编译器 数据库
异步日志方案——spdlog
异步日志方案——spdlog
|
5月前
|
存储 Prometheus Kubernetes
在K8S中,如何收集K8S日志?有哪些方案?
在K8S中,如何收集K8S日志?有哪些方案?
|
5月前
|
存储 Kubernetes Java
阿里泛日志设计与实践问题之在写多查少的降本场景下,通过SLS Scan方案降低成本,如何实现
阿里泛日志设计与实践问题之在写多查少的降本场景下,通过SLS Scan方案降低成本,如何实现

相关产品

  • 日志服务