《Apache Flink 案例集(2022版)》——2.数据分析——快手-Flink SQL 在快手的扩展和实践(3)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——2.数据分析——快手-Flink SQL 在快手的扩展和实践(3)

《Apache Flink 案例集(2022版)》——2.数据分析——快手-Flink SQL 在快手的扩展和实践(2) https://developer.aliyun.com/article/1228372



二、 性能优化  聚合上的状态优化


聚合上的状态优化


image.png


这是一个聚合场景下 distinct states 状态复用的案例,需要统计应用下每个子频道的 UV。该案例有两个特点,频道是可枚举的并且每个频道访客的重合度很高。


image.png


最原始的查询语句如上图,group key 是一个频道,用一个 count distinct 来计算各个频道的 UV。设备集合在状态中首先是存在一个 map state,假设频道的枚举只有三个,A、B 和 other,group key 是频道 ID, map state 的 key 设备 ID, value 是一个 64 bit 的 long 类型的值,每个 bit 表示这个频道下该设备是否出现,在简单的场景下这个 Value 值就是 1。上图 B 频道下有两个设备,ID 分别是 1 和 3,ID 为 1 的设备同时访问了 A 频道,id 为 3 的设备同时访问了 other 频道。可以发现,不同频道的 map 可以有大量的重合。


image.png


我们提出一种简化的 SQL 表达方式,既能达到状态上的收益,又能减轻数据开发人员的负担。用户只需要在查询语句里,通过一个方式告诉优化器 group key 的枚举值,优化器就会自动改写,进行转列和列转行,改写后就可以复用 distinct map state。改写后等价下的查询语句,只需要在过滤条件里指定枚举值就可以,用 in 或 or 的表达方式都可以。


image.png


上述性能优化可以用在无限流聚合和窗口聚合,并且一个可枚举维度或多个可枚举维度都是可以的,可以用在简单的聚合查询,也可以用在多维聚合。  


但它的限制条件是 group key 里面至少有一个 key 是可枚举的,而且枚举值必须是静态的,能够明确写在过滤条件里。另外每个维度下的 distinct key 得有重合才能达到节约状态的效果。如果需要统计每个省份的 UV,基本上可以认为不同省份的访客是没有交集的,这个时候复用 distinct key 是没有收益的。另外在窗口聚合的时候,窗口函数必须具有行语义,不可以是集合语义。对于行语义的窗口,当前这个数据属于哪个窗口取决于数据本身;但是对于集合语义的窗口,当前这条数据属于哪个窗口,不仅取决于数据本身,还取决于这个窗口收到过的历史数据集合。这个优化调整聚合算子的 group key,会影响每个窗口收到的数据集合,所以不适用于集合语义的窗口。



《Apache Flink 案例集(2022版)》——2.数据分析——快手-Flink SQL 在快手的扩展和实践(4) https://developer.aliyun.com/article/1228369

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
26天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
559 13
Apache Flink 2.0-preview released
|
16天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
64 5
|
1月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
61 3
|
1月前
|
SQL 关系型数据库 MySQL
Go语言项目高效对接SQL数据库:实践技巧与方法
在Go语言项目中,与SQL数据库进行对接是一项基础且重要的任务
53 11
|
1月前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
1月前
|
存储 数据挖掘 数据处理
Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析
【10月更文挑战第8天】随着数据湖技术的发展,越来越多企业开始利用这一技术优化数据处理。Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析。本文分享了巴别时代在构建基于 Paimon 的 Streaming Lakehouse 的探索和实践经验,包括示例代码和实际应用中的优势与挑战。
57 1
|
1月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
|
3月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
45 1
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
3月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
214 2

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多