AIGC:在云上从0开始搭建langchain-ChatGLM,构建私域知识问答机器人DEMO

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: AIGC短板:知识茧房(缺少行业领域的私域数据,专有问题解答效果差;数据时效性缺陷,对实时要求高的问题效果差)。 解法之一:私域数据Embedding +向量数据库(语义检索---向量相似度匹配)。将问题向量化,结合私域知识库中匹配到的“精确”内容,生成高质量prompt,再结合LLM的既有知识,以及概括、推理、扩展等能力,大大提升回答的准确性。 本文介绍了在阿里云上从0开始搭建langchain-ChatGLM,构建私域知识问答机器人DEMO。可用于日常学习和研究,减少环境搭建时踩坑。

简介

AIGC短板:知识茧房(缺少行业领域的私域数据,专有问题解答效果差;数据时效性缺陷,对实时要求高的问题效果差)。

解法之一:私域数据Embedding +向量数据库(语义检索---向量相似度匹配)。将问题向量化,结合私域知识库中匹配到的“精确”内容,生成高质量prompt,再结合LLM的既有知识,以及概括、推理、扩展等能力,大大提升回答的准确性。这也是langchain-ChatGLM的基本原理:

image.png


本文介绍了在阿里云上从0开始搭建langchain-ChatGLM,构建私域知识问答机器人DEMO。可用于日常学习和研究,减少环境搭建时踩坑。


安装步骤

以在Ubuntu 18.04 64系统搭建LLM环境,安装《langchain-ChatGLM》为例:

 

1、 创建GPU实例(显存8GB以上,磁盘至少50G)本文选择了带P100 GPU的 ecs.gn5-c4g1.xlarge实例,在实例创建时选择安装cuda 11.4。设置用户名及登录密码。

image.png

2、 设置安全组配置,配置出方向端口22,并在源IP中加入本机IP

3、 Ssh到云ECS。如果是root登录,系统会提示正在安装CUDA,待安装完毕,查看GPU详情(若命令无法正常运行,则说明CUDA没安装好):nvidia-smi

image.png

4、 ECS上安装相关软件包:

Asudo apt-get update

B安装gcc编译器(可选,系统中通常已有)sudo apt install build-essential

C、安装Python,以3.8为例:sudo apt install python3.8

D、安装miniconda

1)下载安装包:注意miniconda包需选择对应python版本的包

wget https://repo.anaconda.com/miniconda/Miniconda3-py38_23.3.1-0-Linux-x86_64.sh

2)运行安装脚本,并初始化:bash Miniconda3-py38_23.3.1-0-Linux-x86_64.sh

3)(可在2中完成)初始化终端 Shell,以便运conda~/miniconda3/bin/conda init

4)初始化完成后,运行bash命令,即可进入conda环境:bash

5)创建个新的环境(可选):conda create --name aigc python=3.8 -y

6)激活aigc环境(可选):conda activate aigc

5、安装gitsudo apt install git    

6git clone langchain-ChatGLM,并安装软件依赖:

git clone https://github.com/imClumsyPanda/langchain-ChatGLM.git

cd langchain-ChatGLM && pip install -r requirements.txt

pip install fastapi uvicorn

conda install nltk        # langchain依赖的语言工具包

 

7chatglm-6b模型及Embedding 模型,下载到本地(可从本地加载模型):目前支持chatglm-6b-int4-qe、chatglm-6b-int4、chatglm-6b-int8、chatglm-6b、chatyuan、moss。本文以chatglm-6b为例。注:模型需要占用数十G空间,可将ECS实例的本地盘格式化后挂载,将模型存放在本地盘上。

安装git-lfsapt install git-lfs

git-lfs clone https://huggingface.co/THUDM/chatglm-6b

 

# 下载 Embedding 模型,目前支持ernie-tiny、ernie-base、text2vec-base、text2vec,本文以text2vec为例。

$ git clone https://huggingface.co/GanymedeNil/text2vec-large-chinese /your_path/

# 模型需要更新时,可打开模型所在文件夹后拉取最新模型文件/代码

$ git lfs pull

 

8更新config/model_config.py中的模型路径为本地路径

llm_model_dict变量中"chatglm-6b""pretrained_model_name": "/home/fsnode/chatglm-6b"

embedding_model_dict变量中"text2vec""text2vec": "/home/fsnode/text2vec-large-chinese"

 

9、导入自有的文档到ecs,目前主要支持mdtxtpdfjpg格式。

 

10、运行CLIweb DEMO

cli_demopython cli_demo.py

webui:如需要公网访问,还需要将webui.py中修改:share=True

A、安装gradio pip install gradio

BECS实例安全组的入方向添加安全组规则,并放行8501端口(默认公网服务端口,也可以自定义)。

image.png

C、在ECS上运行脚本:python webui.py

D、脚本运行成功后,会展示生成的公网链接。在本机浏览器中输入该链接,就可以使用了。

image.png

此外,如果不想修改安全组端口,也无需公网访问。可以把模型的本地服务端口7860直接映射到自己的本地便携上,登录使用:

A、本地便携机上执行如下命令,将云ECS7860端口映射到本地(IP及用户名填实际的):

ssh -L7860:localhost:7860 ecs-user@ecs公网IP

B、在本地浏览器登录web界面:http://127.0.0.1:7860


相同的问题,在未结合私域数据下,使用相同ChatGLM模型回答如下:从对比可以看出,无私域数据情况下的回答有明显的错误。而结合私域数据后,答案很准确。

image.png


附录

参考资料:

https://github.com/THUDM/ChatGLM-6B#readme

https://github.com/imClumsyPanda/langchain-ChatGLM

https://github.com/imClumsyPanda/langchain-ChatGLM/blob/master/docs/FAQ.md

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
8天前
|
人工智能 自然语言处理 API
深入浅出 LangChain 与智能 Agent:构建下一代 AI 助手
我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。这就是大型语言模型(LLM)能够做到的,比如 GPT-4,它就像是一套庞大的乐高积木套装,等待我们来发掘和搭建。
|
2月前
|
机器学习/深度学习 自然语言处理 算法
LangChain 构建问题之智能体协同中的决策机制的实现如何解决
LangChain 构建问题之智能体协同中的决策机制的实现如何解决
31 1
|
2月前
|
自然语言处理
LangChain 构建问题之实例化一个聊天模型如何解决
LangChain 构建问题之实例化一个聊天模型如何解决
14 1
|
2月前
|
存储 索引
LangChain 构建问题之Prompt Templates(提示模板)的定义如何解决
LangChain 构建问题之Prompt Templates(提示模板)的定义如何解决
14 1
|
2月前
|
搜索推荐 API 数据库
LangChain 构建问题之处理长篇报告总结的问题如何解决
LangChain 构建问题之处理长篇报告总结的问题如何解决
32 1
|
2月前
|
存储 自然语言处理 算法
【LangChain】如何本地部署基于chatGPT的实时文档和表格数据的助手,在自己的数据上构建chatGPT?
本文介绍了如何使用LangChain库和FAISS工具在本地部署一个基于chatGPT的实时文档和表格数据助手,详细阐述了项目原理、搭建步骤、环境配置、代码修改和运行流程,以及如何在自己的数据上构建和使用chatGPT。
43 1
|
2月前
|
人工智能 自然语言处理 前端开发
LangChain 构建问题之MetaGPT 和 ChatDev 的支持功能差异如何解决
LangChain 构建问题之MetaGPT 和 ChatDev 的支持功能差异如何解决
38 0
|
2月前
|
数据可视化 Unix Linux
LangChain 构建问题之可视化智能代理对游戏的生成过程如何解决
LangChain 构建问题之可视化智能代理对游戏的生成过程如何解决
14 0
|
2月前
|
开发框架 Unix Linux
LangChain 构建问题之在Unix/Linux系统上设置OpenAI API密钥如何解决
LangChain 构建问题之在Unix/Linux系统上设置OpenAI API密钥如何解决
41 0
|
2月前
|
存储
LangChain 构建问题之MetaGPT 对复杂任务的处理如何解决
LangChain 构建问题之MetaGPT 对复杂任务的处理如何解决
33 0
下一篇
无影云桌面