Python+大数据计算平台,PyODPS架构手把手教你搭建

简介: 在2016年10月的云栖社区在线培训上,来自阿里云大数据事业部的秦续业分享了《双剑合壁——Python和大数据计算平台的结合实战》。他主要介绍了数据分析和机器学习的方法、DataFrame整体架构以及基础API、前端、后端、机器学习的具体实现方法。

免费开通大数据服务:https://www.aliyun.com/product/odps

在2016年10月的云栖社区在线培训上,来自阿里云大数据事业部的秦续业分享了《双剑合壁——Python和大数据计算平台的结合实战》。他主要介绍了数据分析和机器学习的方法、DataFrame整体架构以及基础API、前端、后端、机器学习的具体实现方法。

回顾视频链接:https://yq.aliyun.com/edu/lesson/play/396

本次视频直播的整理文章整理完毕,如下内容。


数据分析和机器学习

9bed0bd850ac3c854151a370532c16738d0df9fc

大数据基本都是建立在Hadoop系统的生态上的,其实一个Java的环境。很多人喜欢用Python和R来进行数据分析,但是这往往对应一些小数据的问题,或者本地数据处理的问题。如何将二者进行结合使其具有更大的价值?Hadoop现有的生态系统和现有的Python环境如上图所示。

MaxCompute

MaxCompute是面向离线计算的大数据平台,提供TB/PB级的数据处理,多租户、开箱即用、隔离机制确保安全。MaxCompute上主要分析的工具就是SQL,SQL非常简单、容易上手,属于描述型。Tunnel提供数据上传下载通道,不需要经过SQL引擎的调度。

Pandas

Pandas是基于numpy的数据分析的工具,里面最重要的结构是DataFrame,提供一系列绘图的API,背后是matplotlib的操作,非常容易和Python第三方库交互。

PyODPS架构

e280fd73cad955b1288760cf2d7f14a91381bf52

PyODPS即利用Python进行大数据分析,其架构如上图所示。底层是基础API,可以利用其操作MaxCompute上的表、函数或者资源。再上面是DataFrame框架,DataFrame包括两部分,一部分是前端,定义了一套表达式的操作,用户写的代码会转化成表达式树,这与普通的语言是一样的。用户可以自定义函数,也可以进行可视化,与第三方库进行交互。后端最下面是Optimizer,其作用是对表达式树进行优化。ODPS和pandas都是通过compiler和analyzer提交到Engine来执行。

背景

为什么要做DataFrame框架?

d0bfe89af3fed66453a477e75ab06e7ff0905078

对于任何一个大数据分析工具,都会面临三个维度上的问题:表达力,API、语法、编程语言是否简单、符合直觉?数据,存储、元数据是否能压缩、有效?引擎,计算的性能是否足够?所以就会面临pandas和SQL两个选择。

b2e61045c9e60724835726b6f13116206d42a10f

如上图所示,pandas的表达力非常好,但是其数据只能放在内存中,引擎是单机的,受限于本机的性能。SQL的表达力有限,但是可以用于大量的数据,数据量小的时候没有引擎的优势,数据量大的时候引擎会变得很有优势。ODPS的目标是综合这两者的优点。

PyODPS DataFrame

PyODPS DataFrame是使用Python语言写的,可以使用Python的变量、条件判断、循环。可以使用pandas类似的语法,定义了自己的一套前端,有了更好的表达力。后端可以根据数据来源来决定具体执行的引擎,是visitor的设计模式,可扩展。整个执行是延迟执行,除非用户调用立即执行的方法,否则是不会直接执行的。

fd8adc266467d88c5f0b484a73527af2703a8b95

从上图中可以看出,语法非常类似于pandas。

表达式和抽象语法树

5227955b299aef4e2c09ce9de696cf4df702ddca

从上图可以看出,用户从一个原始的Collection来进行GroupBy操作,再进行列选择的操作,最下面是Source的Collection。取了两个字段species,这两个字段是做By操作的,pental_length是进行聚合的操作取聚合值。Species字段是直接取出来,shortest字段是进行加一的操作。

Optimizer(操作合并)

1bd6133ff553c7c80c15138d0affdccbfc11df95

后端首先会使用Optimizer对表达式树进行优化,先做GroupBy,然后在上面做列选择,通过操作合并可以去除petal_length做聚合操作,再加一,最终形成了GroupBy的Collection。

Optimizer(列剪枝)

501347d2b2ea938ee88643fe727bee725f8de710

用户join了两个data frame,再取来自data frame 的两个列的时候,如果提交到一个大数据的环境,这样一个过程是非常低下的,因为不是每个列都用到了。所以要对joined下的列进行剪枝操作。比如,data frame1我们只用到了其中的一个字段,我们只需要将字段截取出来做一个projection来形成新的Collection,data frame2也类似。这样,对这两部分进行校验操作的时候就能极大的减少数据的输出量。

Optimizer(谓词下推)

23bc94bb362fdcb8bdc7f80f5901b1d6090d9652

如果对两个data frame进行joined然后再分别进行过滤的话,这个过滤操作是应该下推到下面来执行的,这样就能减少joined 的输入的量。

可视化

270ec903b6736f0c5e41d351a36e69bc8374ebab

提供了visualize()来方便用户进行可视化。在右边的例子中可以看到,ODSP SQL后端会compile成一条SQL执行。

后端

0d719dc433e64ae858adda2d97a3fdaa0f0ee4c3

从上图中可以看出,计算后端是非常灵活的。用户甚至可以joined一个pandas的data frame和maxcompute上一个表的数据。

Analyzer

Analyzer的作用是针对具体的后端,将一些操作进行转化。比如:

  • 有些操作比如value_counts,pandas本身支持,因此对于pandas后端,无需处理;对于ODPS SQL后端,没有一个直接的操作来执行,所以在analyzer执行的时候,会被改写成groupby + sort的操作;
  • 还有一些算子,在compile到ODPS SQL时,没有内建函数能完成,会被改写成自定义函数。

ODPS SQL后端

42652599b70fda0e6411358958abe1e18c04bb02

ODPS SQL后端怎么进行SQL编译再执行的操作?编译器可以从上到下遍历表达式树,找到Join或者Union。对于子过程,进行递归compile。再到Engine来具体执行时,会使用Analyzer对表达式树进行改写,compile自上而下的子过程,自底向上compile成SQL子句,最终得到完整的SQL语句,提交SQL并返回任务。

pandas后端

首先访问这个表达式树,然后对每个表达式树节点对应到pandas操作,整个表达式树遍历完之后就会形成DAG。Engine执行按DAG拓扑顺序执行,不断地把它应用到pandas操作,最终得到一个结果。对于大数据环境来说,pandas后端的作用是做本地DEBUG;当数据量很小时,我们可以使用pandas进行计算。

难点+坑

  • 后端编译出错容易丢失上下文,多次optimize和analyze,导致难以查出是之前哪处visit node导致。解决:保证每个模块独⽴立性、测试完备;
  • bytecode兼容问题,maxcompute只支持Python2.7的自定义函数的执行;
  • SQL的执行顺序。

ML机器学习

22a5a9d3982cc046f166251553cf49251272e765

机器学习是输入输出一个data frame。比如,有一个iris的data frame,先用name字段来做一个分类字段,调用split方法将其分成60%的训练数据和40%的测试数据。然后初始化一个RandomForests,其里面有一棵决策树,调用train方法训练训练数据,调用predict方法形成一个预测数据,调用segments[0]就可以看到可视化结果。

未来计划

  • 分布式numpy,DataFrame基于分布式numpy的后端;
  • 内存计算,提升交互式体验;
  • Tensorflow

欢迎加入MaxCompute钉钉群讨论

35a12d1cfb9f44bb6eead5bf43e9e0ca60393eff

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
5月前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
684 7
|
7月前
|
Ubuntu 编译器 C语言
在Ubuntu22.04平台上交叉编译针对Rv1126架构的GCC13.2.0编译器的步骤。
遵循上述步骤,您应该能够在Ubuntu 22.04平台上成功交叉编译适用于RISC-V架构RV1126的GCC 13.2.0编译器,允许您为目标硬件构建应用程序和操作系统组件。
440 10
|
7月前
|
运维 监控 Java
初创代购选单体,千万级平台用微服务:一张表看懂架构选型红线
在跨境电商代购系统年交易额超3.2万亿元的背景下,本文对比微服务与单体架构的技术原理、适用场景及实战案例,结合性能、运维、成本等维度,为企业提供架构选型指南,助力实现高效扩展与稳定运营。
|
9月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
305 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
10月前
|
SQL 人工智能 前端开发
JeecgBoot 低代码平台 v3.7.4 发布,后台架构大升级
JeecgBoot 是一款基于 SpringBoot2.x/3.x 和 SpringCloud Alibaba 的企业级 AI 低代码平台,采用前后端分离架构(Ant Design & Vue3),支持 Mybatis-plus 和 Shiro。它集成了强大的代码生成器,可一键生成前后端代码,无需手动编写,大幅减少重复工作。平台支持 DeepSeek、ChatGPT 和 Ollama 等主流大模型,提供 AI 对话
703 9
|
11月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
11月前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
349 4
|
11月前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建微服务架构
本文深入探讨了 Python 中的微服务架构,介绍了 Flask、FastAPI 和 Nameko 三个常用框架,并通过实战项目帮助读者掌握这些技术。每个框架都提供了构建微服务的示例代码,包括简单的 API 接口实现。通过学习本文,读者将能够使用 Python 构建高效、独立的微服务。
|
12月前
|
存储 SQL 监控
转转平台IM系统架构设计与实践(二):详细设计与实现
以转转IM架构为起点,介绍IM相关组件以及组件间的关系;以IM登陆和发消息的数据流转为跑道,介绍IM静态数据结构、登陆和发消息时的动态数据变化;以IM常见问题为风景,介绍保证IM实时性、可靠性、一致性的一般方案;以高可用、高并发为终点,介绍保证IM系统稳定及性能的小技巧。
262 6

热门文章

最新文章

相关产品

  • 云原生大数据计算服务 MaxCompute
  • 推荐镜像

    更多