《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(3)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(3)

《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(2) https://developer.aliyun.com/article/1228150



image.png


针对规则模型的流式序列型数据,钱大妈选择 Flink CEP 处理事件序列匹配,由于我们整个风控作业使用 Flink 实现,并且 Flink CEP 作为 Flink 官方原生支持的 Library,集成度高无需引用额外组件即可满足事件序列匹配的需求。作业预期是允许用户在产品界面上热发布规则的,但是基于开源的 Flink CEP,实现规则动态更新能力存在以下困难点:


Flink 社区的 CEP API 无法支持动态修改 Pattern 即无法满足上层规则中台、风控中台的可集成性;

Flink 社区的 CEP API 无法支持Pattern 定义事件之间的超时。  


为了解决这些问题,阿里云 Flink 实时计算团队和钱大妈工程师共同攻坚,在 Flink 社区发起如下两个 FLIP 提案并且在阿里云实时计算产品上面输出相应功能解决此问题:


FLIP-200:CEP 支持多规则和动态 Pattern 变更;

FLIP-228:CEP 支持 Pattern 定义事件之间的超时。  


阿里云实时计算产品输出的支持多规则和动态规则变更、支持 Pattern 定义事件之间的超时以及支持基于 IterativeCondition 的累加器商业化功能拓宽 Flink 在实时风控的能力,并且上述商业化功能已经在钱大妈生产环境落地实践。其中 Flink CEP 动态更新 Pattern 机制中内部各组件的交互总览如下:

image.png

风控规则由产品界面作为入口,规则写入到 Hologres 中,同时 JDBCPatternProcessorDiscover 周期性轮询发现规则的变更。


用户收益

基于 Flink 的实时风控解决方案已经应用于钱大妈集团内部生产环境,在该方案中并不引入新的技术组件和编程语言,最大化复用Flink资源来实现新业务场景,降低了新组件可能引入的潜在运维风险。另一方面也极大降低了团队的学习成本,将实时计算的人力最高效的释放出来。并在开发和业务运用上带来如下好处:  

将 Flink作业逻辑开发和规则描述两者完全解耦;

规则描述存储在DB中,便于查看规则状态和历史版本;

规则变化时只修改DB中的规则,Flink自动加载完成规则更新;

结合Flink生态,可以轻松扩展事件源组件和事件写出组件;

结合Flink分布式能力,可以大规模扩展到上千并发度。


未来规划

钱大妈将和阿里云实时计算Flink团队继续共建和完善这一套风控技术方案。其中在Flink CEP未来规划也将围绕三个主要方向展开:  

Flink CEP能力的进一步增强;

Flink CEP SQL的动态能力;

Flink + DSL的Native支持(目前已提供 Flink + Drools 预览版能力)。



相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第35天】在这篇文章中,我们将深入探讨机器学习的世界。我们将从基础理论开始,然后逐步过渡到实际应用,最后通过代码示例来展示如何实现一个简单的机器学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和见解。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
46 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
1月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
56 1
|
1月前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从理论到实践
本文将带你进入机器学习的世界,从基本概念出发,深入探讨其背后的数学原理,再通过Python代码示例,展示如何实际应用这些理论。无论你是初学者还是有经验的开发者,都能从中获益。
|
1月前
|
机器学习/深度学习 数据可视化 算法
机器学习中的回归分析:理论与实践
机器学习中的回归分析:理论与实践
|
1月前
|
机器学习/深度学习 算法 自动驾驶
探索机器学习:从理论到实践的旅程
【8月更文挑战第62天】本文通过深入浅出的方式,带领读者走进机器学习的世界。首先介绍了机器学习的基本概念,然后通过一个简单的Python代码示例,展示了如何实现一个基本的线性回归模型。最后,探讨了机器学习在现实生活中的应用,以及未来的发展趋势。本文旨在帮助初学者理解机器学习的基本理念,并激发他们进一步探索这一领域的兴趣。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第8天】在这篇文章中,我们将一起踏上一段旅程,探索机器学习的奥秘。我们首先会了解机器学习的基本概念,然后深入其理论基础,最后通过代码示例,将理论应用于实践。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。
46 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多