《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(2)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(2)

《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(1) https://developer.aliyun.com/article/1228153



生产实践

风控业务专员在产品界面通过简单配置即可实时、动态地发布风控规则,更加可以在线地对规则进行更新、删除。其中规则模型分为统计型规则和序列型规则。相同模型支持子规则的嵌套,不同模型之间可以通过与、或关系进行组合。

image.png


以下为规则组合中需要动态配置能力的配置项:  


1.分组字段。

不同字段分组、多字段分组的情况在风控规则的应用中非常常见。有如下规则样例:

以用户 ID 分组:"用户的下单次数";

以用户 ID、区域 ID 作为分组:"用户同一段时间内不同区域的订单数"。


2. 聚合函数。

聚合函数包括业务常用的聚合逻辑,规则引擎依赖 Flink 内置丰富的累加器,并在 Accumulator 接口的基础上进行了根据需求场景的自定义实现。样例规则如下:  

A 门店近 30 分钟独立消费用户数小于 100;

B 门店新客消费金额大于 300。  


3. 窗口周期。

窗口周期也即每个窗口的大小,如业务方可能希望在持续 30 分钟的秒杀活动周期内运行规则,或者希望重点关注异常时段。

每 30 分钟时间窗口内,单个用户发起超过 20 笔未支付订单;

凌晨 1 点至 3 点,单个用户支付订单数超 50 笔。  


4. 窗口类型。

为了面对不同的业务需求,我们将业务规则中常见的窗口类型集成到规则引擎内部。其中包括滑动窗口、累计窗口、甚至是无窗口(即时触发)。  


5. 聚合前的过滤条件:

只对"下单事件"进行统计;

过滤门店"虚拟用户"。  


6. 聚合后的过滤条件:

用户 A 在 5 分钟内下单次数 "超过 150 次";

用户 B 在 5 分钟内购买金额 "超过 300 元"。  


7. 计算表达式。

风控规则的字段口径通常是需要组合计算的,我们在表达式计算和编译中集成了更轻便和更高性能的 Aviator 表达式引擎。规则样例如下:

应收金额大于 150 元(应收金额 = 商品金额合计 +运费 + 优惠合计);

通过 POS 端支付的应收金额大于 150 元。  


8. 行为序列。

行为序列其实也是事件与事件之间的组合,他打破了以往风控规则只能基于单事件维度描述事实的壁垒,在事件与事件之间的事实信息也将被规则引擎捕捉。规则样例如下:

用户 A 在 5 分钟内依次做了点击、收藏、加购;

用户 B 在 30 分钟前领了优惠券,但是没有下单。




《Apache Flink 案例集(2022版)》——3.机器学习——钱大妈-基于阿里云Flink的实时风控实践(3) https://developer.aliyun.com/article/1228145 

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
18天前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
51 4
|
17天前
|
存储 数据挖掘 数据处理
巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践
随着数据湖技术的发展,企业纷纷探索其优化潜力。本文分享了巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践。Paimon 支持流式和批处理,提供高性能、统一的数据访问和流批一体的优势。通过示例代码和实践经验,展示了如何高效处理实时数据,解决了数据一致性和故障恢复等挑战。
99 61
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第35天】在这篇文章中,我们将深入探讨机器学习的世界。我们将从基础理论开始,然后逐步过渡到实际应用,最后通过代码示例来展示如何实现一个简单的机器学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和见解。
|
14天前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
1月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
28 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
46 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
1月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
40 3
|
1月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
33 1

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多