《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(1)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(1)

作者:袁一


用户背景

中国工商银行成立于1984年1月1日。2005年10月28日,整体改制为股份有限公司。2006年10月27日,成功在上交所和香港联交所同日挂牌上市。经过持续努力和稳健发展,已经迈入世界领先大银行之列,拥有优质的客户基础、多元的业务结构、强劲的创新能力和市场竞争力。连续八年位列英国《银行家》全球银行1000强和美国《福布斯》全球企业2000强榜单榜首、位列美国《财富》500强榜单全球商业银行首位,连续五年位列英国Brand Finance全球银行品牌价值500强榜单榜首。


业务需求

工商银行从 2002 年开始建设数据集市,当时主要使用 Oracle 类单机版的关系型数据库。随着数据量不断增加,开始引入 TeraData、ExaData 等国外高端一体机。为了满足数据时效,以及企业级大规模普惠用数的诉求,企业内部的大数据平台需要不仅支持批量计算,还需要满足各类用数场景全栈覆盖的技术体系。


image.png

为了满足数据时效性以及企业级大规模普惠用数的诉求,企业内部的大数据平台需要不仅支持批量计算,还需要满足各类用数场景全栈覆盖的技术体系。以工行为例,大数据平台内部除批量计算之外,包含实时计算,联机分析、数据 API 等平台,主要以 Flink 作为内部引擎,用于缩短数据端到端闭环时间,形成联机高并发的访问能力,提升数据赋能业务的时效。除此之外,还包含数据交换、数据安全等面向特定技术领域的二级平台。在最上面一层,通过可视化工具面向开发人员,数据分析师,运维人员提供了支撑。


平台建设

工行实时大数据平台建设思路,主要会围绕时效、易用、安全可靠和降本增效来展开。


1. 数据实效性

image.png


在数据时效方面,上图是描述数据流向的示意图,原始数据从左上角的应用产生,经过蓝色和粉色两条链路。其中,蓝色链路是业务视角上端到端闭坏的链路,应用产生的数据会写入 MySQL 或者 Oracle 等关系型数据库,之后通过 CDC 相关技术,将数据库产生的日志复制到 Kafka 消息队列中,将同一份数据的共享,避免多次读取数据库日志。


在 Kafka 之后,是实时计算平台。实时计算平台除了实现对时效要求较高的计算处理场景之外,它还可以通过 Flink 结合 HUDI/IceBerg 等产品实现实时数据入湖。而且能将 Flink 的结果输出到 HBase\ES 等联机数据库中。将这部分数据以服务的形式暴露,即数据中台服务,从而提供给应用调用。  


粉色链路的数据,最终回到数据分析师那里,是蓝色链路的衍生。各个应用产生的数据,通过 Flink 和 Hudi 的实时数据入湖,通过 Presto 或 CK 等分析型引擎,供数据分析师进行 BI 分析。通过这条链路,数据时效得以提升,让分析师访问到分钟级延时的热数据,更加实时、准确地做出运营决策。一般高时效的业务场景,都包含在这条技术链路的体系之内。  


2. 易用性


早期的实时计算模型都是基于 Java 等高级语言进行开发。在 Spark Dataframe 以及 Flink SQL 出现之后,开发人员可以通过 SQL 来开发实时计算模型。随着分布式体系以及数据中台的发展,很多实时计算模型在处理业务逻辑过程中,需要访问外部联机接口。工行将调用的 HTTP、Dubbo、Redis 等外部接口,抽象成一张张外部表。直接通过一句 SQL 就能将 Kafka 中的流表与 Dubbo 的维表关联,然后将结果送到 HTTP 接口,大幅提升开发效率。


在业务研发方面,通过借鉴业界 DataOps 的理念,工行打造了一条集开发、测试、版本制作及发布于一体的研发流水线。相比于早期大数据工程师基于 UltraEdit 开发的模型,这种可视化 IDE 的开发效率至少提升 10 倍以上。  


在生产运维方面,工行为运维人员提供多个用于展示平台健康状态的仪表盘。同时,并通过机器学习和专家规则相结合的方式,实现了面向多类场景的故障根因自动分析的能力,降低运维门槛。对于开发人员来说,他们更关心作业中断后运维平台能否帮助分析问题,所以在作业中断时,为开发人员提供问题诊断能力,95% 以上的常见问题都可以自动完成分析。  


在 BI 平台方面,工行面向业务人员提供了自助数据分析探索的能力。主要解决用数最后一公里的问题。分析结果提供了多样化的展示仪表盘,不但支持基于拖拉拽的多维分析,而且支持数据下钻挖掘等功能。  



《Apache Flink 案例集(2022版)》——5.数字化转型——工商银行-工商银行实时大数据平台建设历程及展望(2) https://developer.aliyun.com/article/1227988



相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
14天前
|
存储 人工智能 大数据
The Past, Present and Future of Apache Flink
本文整理自阿里云开源大数据负责人王峰(莫问)在 Flink Forward Asia 2024 上海站主论坛开场的分享,今年正值 Flink 开源项目诞生的第 10 周年,借此时机,王峰回顾了 Flink 在过去 10 年的发展历程以及 Flink社区当前最新的技术成果,最后展望下一个十年 Flink 路向何方。
299 33
The Past, Present and Future of Apache Flink
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
143 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
857 13
Apache Flink 2.0-preview released
|
2月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
97 3
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
159 56
|
28天前
|
存储 消息中间件 分布式计算
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
Cisco WebEx 早期数据平台采用了多系统架构(包括 Trino、Pinot、Iceberg 、 Kyuubi 等),面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
|
1月前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
72 1
|
2月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
65 1
|
2月前
|
数据挖掘 物联网 数据处理
深入探讨Apache Flink:实时数据流处理的强大框架
在数据驱动时代,企业需高效处理实时数据流。Apache Flink作为开源流处理框架,以其高性能和灵活性成为首选平台。本文详细介绍Flink的核心特性和应用场景,包括实时流处理、强大的状态管理、灵活的窗口机制及批处理兼容性。无论在实时数据分析、金融服务、物联网还是广告技术领域,Flink均展现出巨大潜力,是企业实时数据处理的理想选择。随着大数据需求增长,Flink将继续在数据处理领域发挥重要作用。
191 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多