【OCR学习笔记】8、OCR移动端网络汇总与PyTorch实现(一)

简介: 【OCR学习笔记】8、OCR移动端网络汇总与PyTorch实现(一)

1 轻量化网络简介


前面所提网络在向着越来越大、越来越深的方向发展,但在实际应用中计算性能有限,但又有着极强的业务需求。对于效率问题,可以想到的方法通常是对模型进行压缩与剪枝,降低网络的参数量,从而降低计算量加快推理速度。相较于对模型进行后处理的方法,轻量化模型设计则是另辟蹊径。

轻量化模型主要是设计更加高效的网络计算方式,在降低网络参数的同时,不损失性能。

常用的四个轻量化模型系列:SqueezeNet、MobileNet、ShuffleNet、Xception。这些模型在实际场景中都得到了广泛的应用。

1.1 SqueezeNet

SqueezeNet是一个人工设计的轻量化网络,它在ImageNet上实现了和AlexNet相同水平的正确率,但是只使用了1/50的参数。更进一步,使用模型压缩技术,可以将SqueezeNet压缩到0.5MB,这是AlexNet的1/510

引入了两个术语CNN微结构CNN宏结构

  • CNN微结构:由层或几个卷积层组成的小模块,如inception模块。
  • CNN宏结构:由层或模块组成的完整的网络结构,此时深度是一个重要的参数。

网络结构的设计策略:

  • (1)代替3x3的滤波器为1x1,这样会减少9倍的参数。
  • (2)减少输入到3x3滤波器的输入通道,这样可以进一步减少参数,本文使用squeeze层来实现。
  • (3)降采样操作延后,可以给卷积层更大的激活特征图,意味着保留的信息更多,可以提升准确率。

策略是减少参数的方案,是在限制参数预算的情况下最大化准确率。如下图所示作者引入了Fire模块来构造CNN,此模块成功地应用了上述的3个策略。

2fc30e1ad78e1f9826e26d2110e8a0dc.png

模块由squeeze层和expand层组成,squeeze层由1x1的卷积层组成,,可以减少输入expand层的特征图的输入通道。expand层由1x1和3x3的卷积混合而成,<,称为扩展了特征图。

PyTorch实现Fire模块如下:

class Fire(nn.Module):
    def __init__(self, inplanes, squeeze_planes, expand1x1_planes, expand3x3_planes):
        super(Fire, self).__init__()
        self.inplanes = inplanes
        self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
        self.squeeze_activation = nn.ReLU(inplace=True)
        self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes, kernel_size=1)
        self.expand1x1_activation = nn.ReLU(inplace=True)
        self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes, kernel_size=3, padding=1)
        self.expand3x3_activation = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.squeeze_activation(self.squeeze(x))
        return torch.cat([
            self.expand1x1_activation(self.expand1x1(x)),
            self.expand3x3_activation(self.expand3x3(x))
        ], 1)

整体结构以普通的卷积层(conv1)开始,接着连接8个Fire(2-9)模块,最后以卷积层(conv10)结束。每个Fire模块的filter数量逐渐增加,并且在conv1,Fire4,Fire8和conv10后使用步长为2的max-pooling,这种相对延迟的pooling符合了策略(3)。如下作者对比了添加跳跃层的squeezenet:

PyTorch实现如下:

class SqueezeNet(nn.Module):
    def __init__(self, version=1.0, num_classes=1000):
        super(SqueezeNet, self).__init__()
        if version not in [1.0, 1.1]:
            raise ValueError("Unsupported SqueezeNet version {version}: 1.0 or 1.1 expected".format(version=version))
        self.num_classes = num_classes
        if version == 1.0:
            self.features = nn.Sequential(
                nn.Conv2d(3, 96, kernel_size=7, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(96, 16, 64, 64),
                Fire(128, 16, 64, 64),
                Fire(128, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 32, 128, 128),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(512, 64, 256, 256),
            )
        else:
            self.features = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=3, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(64, 16, 64, 64),
                Fire(128, 16, 64, 64),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(128, 32, 128, 128),
                Fire(256, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                Fire(512, 64, 256, 256),
            )
        # Final convolution is initialized differently form the rest
        final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5), final_conv, nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d((1, 1))
        )
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if m is final_conv:
                    init.normal_(m.weight, mean=0.0, std=0.01)
                else:
                    init.kaiming_uniform_(m.weight)
                if m.bias is not None:
                    init.constant_(m.bias, 0)
    def forward(self, x):
        x = self.features(x)
        x = self.classifier(x)
        return x.view(x.size(0), self.num_classes)

1.2 MobileNet

mobilenet做的一个工作相当于把卷积核拆分,并提出了逐点卷积depthwise separable convolutions。如下图:

47e29a9e61b31d1c10c2bdd21a9829f1.png

简单解释一下depthwise separable convolutions:假设输入的feature map有C1层,先对每一层先进行3x3的卷积,得到新的C1层的feature map,对新的feature map进行1x1卷积,得到输出的C2层feature map。所以整个过程参数为:3x3xC1+1x1xC1xC2。

class MobileNet(nn.Module):
    def __init__(self):
        super(MobileNet, self).__init__()
        def conv_bn(inp, oup, stride):
            return nn.Sequential(
                nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
                nn.BatchNorm2d(oup),
                nn.ReLU(inplace=True)
            )
        def conv_dw(inp, oup, stride):
            return nn.Sequential(
                nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
                nn.BatchNorm2d(inp),
                nn.ReLU(inplace=True),
                nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
                nn.ReLU(inplace=True),
            )
        self.model = nn.Sequential(
            conv_bn(  3,  32, 2), 
            conv_dw( 32,  64, 1),
            conv_dw( 64, 128, 2),
            conv_dw(128, 128, 1),
            conv_dw(128, 256, 2),
            conv_dw(256, 256, 1),
            conv_dw(256, 512, 2),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 512, 1),
            conv_dw(512, 1024, 2),
            conv_dw(1024, 1024, 1),
            nn.AvgPool2d(7), )
        self.fc = nn.Linear(1024, 1000)
    def forward(self, x):
        x = self.model(x)
        x = x.view(-1, 1024)
        x = self.fc(x)
        return x

后续的Mobilenet v2针对Mobilenet v1,作者进一步提出了改进方案,作者发现在通道数少的情况下不应该接relu这个激活函数,会造成大量节点变0的情况,因此作者提出了类似于resnet的残差概念,将前面还没有置零的部分直接加和到下一层。除此之外,在通道数较少的层仅仅采用线性函数,而取消了非线性的relu激活。

相关文章
|
2月前
|
机器学习/深度学习 算法 PyTorch
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
RPN(Region Proposal Networks)候选区域网络算法解析(附PyTorch代码)
260 1
|
3月前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
2月前
|
机器学习/深度学习 PyTorch 测试技术
|
4月前
|
网络协议 Linux C++
Linux C/C++ 开发(学习笔记十二 ):TCP服务器(并发网络编程io多路复用epoll)
Linux C/C++ 开发(学习笔记十二 ):TCP服务器(并发网络编程io多路复用epoll)
59 0
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
【PyTorch实战演练】AlexNet网络模型构建并使用Cifar10数据集进行批量训练(附代码)
70 0
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
73 0
|
4月前
|
网络协议 Linux C++
Linux C/C++ 开发(学习笔记十一 ):TCP服务器(并发网络网络编程 一请求一线程)
Linux C/C++ 开发(学习笔记十一 ):TCP服务器(并发网络网络编程 一请求一线程)
39 0
|
14天前
|
机器学习/深度学习 数据可视化 PyTorch
PyTorch小技巧:使用Hook可视化网络层激活(各层输出)
这篇文章将演示如何可视化PyTorch激活层。可视化激活,即模型内各层的输出,对于理解深度神经网络如何处理视觉信息至关重要,这有助于诊断模型行为并激发改进。
14 1
|
2月前
|
机器学习/深度学习 算法 PyTorch
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
【PyTorch实战演练】深入剖析MTCNN(多任务级联卷积神经网络)并使用30行代码实现人脸识别
66 2
|
2月前
|
机器学习/深度学习 自然语言处理 PyTorch
【PyTorch实战演练】基于全连接网络构建RNN并生成人名
【PyTorch实战演练】基于全连接网络构建RNN并生成人名
24 0