有效融合语言模型、图神经网络,文本图训练框架GLEM实现新SOTA

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 有效融合语言模型、图神经网络,文本图训练框架GLEM实现新SOTA


机器之心编辑部

蒙特利尔算法学习人工智能实验室(Mila)和微软亚洲研究院等单位提出文本图训练框架 GLEM [1],能够有效融合语言模型和图神经网络,取得 OGB 3 个数据集第一名。




引言



图 1:(a) 文本图 (b) 图神经网络 (c) 语言模型


图是一种普遍的数据结构,建模了节点之间的结构关系。在现实生活中,许多节点包含丰富的文本特征,这种图被称为文本图 (text-attributed graph [2])。例如,论文引用网络中包含了论文的文本和论文之间的引用关系;社交网络中包含了用户的文本描述和用户直接的交互关系。在文本图上的表示学习模型,可以应用于节点分类、链路预测等任务中,具有广泛的应用价值。


文本图包含了两方面信息:节点的文本信息和节点之间的图结构信息。传统文本图的建模可以分为对文本建模和对图建模两个角度。其中,对文本的建模方式(如图 1.b 所示)通常采用基于 Transformer 的语言模型(LM)得到单个节点的文本表示,并对目标任务进行预测;对图建模的建模方式(图 1.c 所示)通常采用图神经网络(GNN),通过消息传播机制来建模节点特征之间的交互,并预测目标任务。


然而,两种模型只能分别建模文本图中的文本和图结构:传统语言模型无法直接考虑结构信息,而图神经网络无法直接对原始文本信息进行建模。为了同时建模文本和图结构,研究者们尝试将语言模型和图神经网络融合起来,同时更新两个模型的参数。但是,现有工作 [2, 3] 无法同时建模大量邻居文本,可拓展性差,无法应用在大文本图上。


GLEM 框架


为了更有效的融合图神经网络和语言模型,本文提出了 Graph and  Language Learning by Expectation Maximization (GLEM) 框架。GLEM 框架基于变分期望最大算法(Variational EM),交替学习图神经网络和语言模型,从而获得了很好的可拓展性。


图 2:GLEM 框架


具体地,以节点分类任务为例,在 E 步 , GLEM 根据真实标签和图神经网络预测的伪标签训练语言模型;在 M 步 , GLEM 根据真实标签和语言模型预测的伪标签训练图神经网络。通过这种方式,GLEM 框架有效挖掘了局部的文本信息和全局的结构交互信息。通过 GLEM 框架训练好的图神经网络(GLEM-GNN)和语言模型(GLEM-LM)都可以用来预测节点标签。


实验


论文的实验部分主要从以下几个方面讨论 GLEM 框架:


  • 有效性:GLEM 模型能够有效融合图神经网络和语言模型,对两种模型都有明显提升。GLEM 框架在 OGB 的三个文本图节点分类任务上取得了第一名。
  • 可扩展性:通过交替训练图神经网络和语言模型,GLEM 框架可以同时训练大语言模型和深层 GNN。
  • 无结构归纳推理(Structure-free inductive)能力:传统 GNN 模型在面对没有图结构的新节点时表现不佳。相比之下,GLEM-LM 仅使用文本特征(无需图结构)就能进行有效推理。
  • 模型收敛:GLEM 使用 EM 迭代算法,在一些数据集上一次 EM 迭代即可收敛。


图 3:GLEM 框架在 OGBN-arxiv, products, papers100M 数据集上取得第一名


引用

[1] Zhao et al. Learning on Large-scale Text-attributed Graphs via Variational Inference. Arxiv Preprint '22.

[2] Yang et al. GraphFormers: GNN-nested Transformers for Representation Learning on Textual Graph. In NeurIPS '21.

[3] Zhu et al. TextGNN: Improving Text Encoder via Graph Neural Network in Sponsored Search. In WWW '21.


相关文章
|
9天前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
17 1
|
13天前
|
机器学习/深度学习 文件存储 异构计算
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
63 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
|
2月前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
70 12
|
2月前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
83 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
3月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
112 8
|
3月前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
197 3
|
4月前
|
机器学习/深度学习 人工智能
类人神经网络再进一步!DeepMind最新50页论文提出AligNet框架:用层次化视觉概念对齐人类
【10月更文挑战第18天】这篇论文提出了一种名为AligNet的框架,旨在通过将人类知识注入神经网络来解决其与人类认知的不匹配问题。AligNet通过训练教师模型模仿人类判断,并将人类化的结构和知识转移至预训练的视觉模型中,从而提高模型在多种任务上的泛化能力和稳健性。实验结果表明,人类对齐的模型在相似性任务和出分布情况下表现更佳。
99 3
|
4月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
106 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
4月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
90 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
244 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤

热门文章

最新文章