声音好听,颜值能打,基于PaddleGAN给人工智能AI语音模型配上动态画面(Python3.10)

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: PaddlePaddle是百度开源的深度学习框架,其功能包罗万象,总计覆盖文本、图像、视频三大领域40个模型,可谓是在深度学习领域无所不窥。PaddleGAN视觉效果模型中一个子模块Wav2lip是对开源库Wav2lip的二次封装和优化,它实现了人物口型与输入的歌词语音同步,说白了就是能让静态图的唇部动起来,让人物看起来仿佛正在唱歌。除此以外,Wav2lip还可以直接将动态的视频,进行唇形替换,输出与目标语音相匹配的视频,如此一来,我们就可以通过AI直接定制属于自己的口播形象了。

借助So-vits我们可以自己训练五花八门的音色模型,然后复刻想要欣赏的任意歌曲,实现点歌自由,但有时候却又总觉得少了点什么,没错,缺少了画面,只闻其声,却不见其人,本次我们让AI川普的歌声和他伟岸的形象同时出现,基于PaddleGAN构建“靓声靓影”的“懂王”。

PaddlePaddle是百度开源的深度学习框架,其功能包罗万象,总计覆盖文本、图像、视频三大领域40个模型,可谓是在深度学习领域无所不窥。

PaddleGAN视觉效果模型中一个子模块Wav2lip是对开源库Wav2lip的二次封装和优化,它实现了人物口型与输入的歌词语音同步,说白了就是能让静态图的唇部动起来,让人物看起来仿佛正在唱歌。

除此以外,Wav2lip还可以直接将动态的视频,进行唇形替换,输出与目标语音相匹配的视频,如此一来,我们就可以通过AI直接定制属于自己的口播形象了。

本机配置CUDA和cudnn

要想把PaddlePaddle框架在本地跑起来,并非易事,但好在有国内深度学习领域的巨擘百度进行背书,文档资源非常丰富,只要按部就班,就不会出太大问题。

首先,在本地配置好Python3.10开发环境,参见:一网成擒全端涵盖,在不同架构(Intel x86/Apple m1 silicon)不同开发平台(Win10/Win11/Mac/Ubuntu)上安装配置Python3.10开发环境

随后,需要在本地配置好CUDA和cudnn,cudnn是基于CUDA的深度学习GPU加速库,有了它才能在GPU上完成深度学习的计算。它就相当于工作的工具,而CUDA作为计算平台,就需要cudnn的配合,这俩个在版本上必须配套。

首先点击N卡控制中心程序,查看本机N卡驱动所支持的CUDA版本:

从图上可知,笔者的显卡是RTX4060,当前驱动最大支持CUDA12.1的版本,换句话说只要是小于等于12.1的CUDA就都是支持的。

随后查看PaddlePaddle框架的官方文档,查看Python3.10所支持的框架版本:

https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#ciwhls-release

根据文档可知,对于Python3.10来说,PaddlePaddle最高的支持版本是win-cuda11.6-cudnn8.4-mkl-vs2017-avx,也就是CUDA的版本是11.6,cudnn的版本是8.4,再高就不支持了。

所以本机需要安装CUDA11.6和cudnn8.4。

注意版本一定要吻合,否则后续无法启动程序。

知晓了版本号,我们只需要去N卡的官网下载安装包即可。

CUDA11.6安装包下载地址:

https://developer.nvidia.com/cuda-toolkit-archive

cudnn8.4安装包下载地址:

https://developer.nvidia.com/rdp/cudnn-archive

首先安装CUDA11.6,安装完成后,解压cudnn8.4压缩包,将解压后的文件拷贝到CUDA11.6安装目录中即可,CUDA安装路径是:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6

随后需要将bin目录添加到系统的环境变量中:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\bin

接着在终端进入demo文件夹:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\extras\demo_suite

执行bandwidthTest.exe命令,返回:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\extras\demo_suite>bandwidthTest.exe  
[CUDA Bandwidth Test] - Starting...  
Running on...  
  
 Device 0: NVIDIA GeForce RTX 4060 Laptop GPU  
 Quick Mode  
  
 Host to Device Bandwidth, 1 Device(s)  
 PINNED Memory Transfers  
   Transfer Size (Bytes)        Bandwidth(MB/s)  
   33554432                     12477.8  
  
 Device to Host Bandwidth, 1 Device(s)  
 PINNED Memory Transfers  
   Transfer Size (Bytes)        Bandwidth(MB/s)  
   33554432                     12337.3  
  
 Device to Device Bandwidth, 1 Device(s)  
 PINNED Memory Transfers  
   Transfer Size (Bytes)        Bandwidth(MB/s)  
   33554432                     179907.9  
  
Result = PASS  
  
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

即代表安装成功,随后可通过deviceQuery.exe查询GPU设备:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.6\extras\demo_suite>deviceQuery.exe  
deviceQuery.exe Starting...  
  
 CUDA Device Query (Runtime API) version (CUDART static linking)  
  
Detected 1 CUDA Capable device(s)  
  
Device 0: "NVIDIA GeForce RTX 4060 Laptop GPU"  
  CUDA Driver Version / Runtime Version          12.1 / 11.6  
  CUDA Capability Major/Minor version number:    8.9  
  Total amount of global memory:                 8188 MBytes (8585216000 bytes)  
MapSMtoCores for SM 8.9 is undefined.  Default to use 128 Cores/SM  
MapSMtoCores for SM 8.9 is undefined.  Default to use 128 Cores/SM  
  (24) Multiprocessors, (128) CUDA Cores/MP:     3072 CUDA Cores  
  GPU Max Clock rate:                            2370 MHz (2.37 GHz)  
  Memory Clock rate:                             8001 Mhz  
  Memory Bus Width:                              128-bit  
  L2 Cache Size:                                 33554432 bytes  
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)  
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers  
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers  
  Total amount of constant memory:               zu bytes  
  Total amount of shared memory per block:       zu bytes  
  Total number of registers available per block: 65536  
  Warp size:                                     32  
  Maximum number of threads per multiprocessor:  1536  
  Maximum number of threads per block:           1024  
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)  
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)  
  Maximum memory pitch:                          zu bytes  
  Texture alignment:                             zu bytes  
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)  
  Run time limit on kernels:                     Yes  
  Integrated GPU sharing Host Memory:            No  
  Support host page-locked memory mapping:       Yes  
  Alignment requirement for Surfaces:            Yes  
  Device has ECC support:                        Disabled  
  CUDA Device Driver Mode (TCC or WDDM):         WDDM (Windows Display Driver Model)  
  Device supports Unified Addressing (UVA):      Yes  
  Device supports Compute Preemption:            Yes  
  Supports Cooperative Kernel Launch:            Yes  
  Supports MultiDevice Co-op Kernel Launch:      No  
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0  
  Compute Mode:  
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >  
  
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.1, CUDA Runtime Version = 11.6, NumDevs = 1, Device0 = NVIDIA GeForce RTX 4060 Laptop GPU  
Result = PASS

至此,CUDA和cudnn就配置好了。

配置PaddlePaddle框架

配置好CUDA之后,让我们来安装PaddlePaddle框架:

python -m pip install paddlepaddle-gpu==2.4.2.post116 -f https://www.paddlepaddle.org.cn/whl/windows/mkl/avx/stable.html

这里安装paddlepaddle的gpu版本,版本号是2.4.2.post116,2.4是最新版,其中116就代表Cuda的版本,注意版本一定不能弄错。

随后克隆PaddleGan项目:

git clone https://gitee.com/PaddlePaddle/PaddleGAN

运行命令本地编译安装PaddleGan项目:

pip install -v -e .

随后再安装其他依赖:

pip install -r requirements.txt

这里有几个坑,需要说明一下:

首先PaddleGan依赖的numpy库还是老版本,它不支持最新的1.24版本,所以如果您的numpy版本是1.24,需要先把numpy卸载了:

pip uninstall numpy

随后安装1.21版本:

pip install numpy==1.21

接着在Python终端中验证PaddleGan是否安装成功:

import paddle  
paddle.utils.run_check()

如果报这个错误:

PreconditionNotMetError: The third-party dynamic library (cudnn64_7.dll) that Paddle depends on is not configured correctly. (error code is 126)  
      Suggestions:  
      1. Check if the third-party dynamic library (e.g. CUDA, CUDNN) is installed correctly and its version is matched with paddlepaddle you installed.  
      2. Configure third-party dynamic library environment variables as follows:  
      - Linux: set LD_LIBRARY_PATH by `export LD_LIBRARY_PATH=...`  
      - Windows: set PATH by `set PATH=XXX; (at ..\paddle\phi\backends\dynload\dynamic_loader.cc:305)  
      [operator < fill_constant > error]

则需要下载cudnn64\_7.dll动态库,然后复制到CUDA11.6的bin目录中,动态库地址后面会贴出来。

再次运行验证程序,返回:

Python 3.10.11 (tags/v3.10.11:7d4cc5a, Apr  5 2023, 00:38:17) [MSC v.1929 64 bit (AMD64)] on win32  
Type "help", "copyright", "credits" or "license" for more information.  
>>> import paddle  
>>> paddle.utils.run_check()  
Running verify PaddlePaddle program ...  
W0517 20:15:34.881800 31592 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 8.9, Driver API Version: 12.1, Runtime API Version: 11.6  
W0517 20:15:34.889958 31592 gpu_resources.cc:91] device: 0, cuDNN Version: 8.4.  
PaddlePaddle works well on 1 GPU.  
PaddlePaddle works well on 1 GPUs.  
PaddlePaddle is installed successfully! Let's start deep learning with PaddlePaddle now.

说明大功告成,安装成功。

本地推理

下面我们给川普的歌曲配上动态画面,首先通过Stable-Diffusion生成一张懂王的静态图片:

关于Stable-Diffusion,请移步:人工智能,丹青圣手,全平台(原生/Docker)构建Stable-Diffusion-Webui的AI绘画库教程(Python3.10/Pytorch1.13.0),囿于篇幅,这里不再赘述。

接着进入到项目的tools目录:

\PaddleGAN\applications\tools>

将川普的静态图片和歌曲文件放入tools目录中。

接着运行命令,进行本地推理:

python .\wav2lip.py --face .\Trump.jpg --audio test.wav --outfile pp_put.mp4 --face_enhancement

这里--face是目标图片,--audio则是需要匹配唇形的歌曲,--outfile参数是输出视频。

face\_enhancement:参数可以添加人脸增强,不添加参数默认为不使用增强功能。

但添加了这个参数需要单独下载模型文件。

Wav2Lip实现唇形与语音精准同步突破的关键在于,它采用了唇形同步判别器,以强制生成器持续产生准确而逼真的唇部运动。此外,它通过在鉴别器中使用多个连续帧而不是单个帧,并使用视觉质量损失(而不仅仅是对比损失)来考虑时间相关性,从而改善了视觉质量。

具体效果:

结语

有的时候,人工智能AI技术的发展真的会让人有一种恍若隔世的感觉,耳听未必为实,眼见也未必为真。最后,成品视频可在Youtube平台(B站)搜索:刘悦的技术博客,欢迎诸君品鉴,本文所有涉及的安装包和动态库请参见:

https://pan.baidu.com/s/1-6NA2uAOSRlT4O0FGEKUGA?pwd=oo0d   
提取码:oo0d
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
人工智能 IDE 开发工具
Python AI 编程助手
Python AI 编程助手。
48 5
|
1月前
|
机器学习/深度学习 自然语言处理 API
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
266 3
|
2月前
|
人工智能
三文带你轻松上手鸿蒙的AI语音03-文本合成声音
三文带你轻松上手鸿蒙的AI语音03-文本合成声音
73 1
三文带你轻松上手鸿蒙的AI语音03-文本合成声音
|
2月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
2月前
|
存储 人工智能 开发者
三文带你轻松上手鸿蒙的AI语音02-声音文件转文本
三文带你轻松上手鸿蒙的AI语音02-声音文件转文本
121 0
三文带你轻松上手鸿蒙的AI语音02-声音文件转文本
|
2月前
|
人工智能 开发者 Python
python读取word文档 | AI应用开发
在RAG系统中,构建知识库时需读取多种外部文档,其中Word文档较为常见。本文介绍如何使用`python-docx`库读取Word文档(.docx格式)中的标题、段落、表格和图片等内容。首先通过`pip install python-docx`安装库,然后利用提供的接口提取所需信息。尽管该库功能强大,但在识别标题样式时需自定义逻辑,并且仅提供图片的URI而非直接加载。示例代码展示了读取文本、识别标题、读取表格及获取图片URI的方法。【10月更文挑战第2天】
102 2
|
3月前
|
人工智能 小程序 API
文字转语音神器+Python编程搞定语音报时小程序
文字转语音神器+Python编程搞定语音报时小程序
33 2
|
3月前
|
API 语音技术 开发者
用python实现文字转语音的5个较好用的模块
这篇文章介绍了五个Python模块:gtts、pyttsx3、baidu-aip、pywin32和speech,它们能够实现文本到语音的转换功能。
106 1
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
53 10
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
python如何实现AI问答与举例
python如何实现AI问答与举例
44 0

热门文章

最新文章